Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Infectivity of Pseudotyped Particles Pairing Hemagglutinin of Highly Pathogenic Avian Influenza a H5N1 Virus with Neuraminidases of The 2009 Pandemic H1N1 and a Seasonal H3N2

Fengwei Zhang1,3, Jia Wu1,3 Chunqiong Xu1,2, Xiaojing Lin1, Honglan Zhao1, Jian Lu1, Yonghui Zhang1, Jianxin Lu3, Xu Zhang2, Ji Ma2, Yuelong Shu1, Yongliang Lou3, Jimin Gao3*, Yue Wang1*

1State Key Laboratory for Molecular Virology and Genetic Engineering, National Institute for Viral Disease Control and Prevention China Center for Disease Control and Prevention Yingxin Street 100, Xuanwu District, Beijing 100052, People’s Republic of China

2School of Clinical Sciences, NingXia Medical University, 1160 Shengli street, Yinchuan city, Ningxia Hui Autonomous Region 750004, People’s Republic of China

3Institute for medical virology, Wenzhou Medical College, University-town, Wenzhou, Zhejiang Province 325035, People’s Republic of China

*Corresponding Author:
Dr. Yue Wang
State Key Laboratory for Molecular Virology and Genetic Engineering
National Institute for Viral Disease Control and Prevention
China Center for Disease Control and Prevention, Yingxin Street 100
Xuanwu District, Beijing 100052, People’s Republic of China
Tel: 86-10-63555751
Fax: 86-10-63510565
E-mail: euy-tokyo@umin.ac.jp

Dr. Jimin Gao
Institute for medical virology, Wenzhou Medical College
Universitytown, Wenzhou, Zhejiang Province 325035
People‘s Republic of China
Tel: 86-577-86699341
Fax: 86-577-86689779
E-mail: jimingao@yahoo.com

Received Date: December 14, 2011; Accepted Date: January 22, 2011; Published Date: January 31, 2011

Citation: Zhang F, Wu J, Xu C, Lin X, Zhao H, et al. (2011) Infectivity of Pseudotyped Particles Pairing Hemagglutinin of Highly Pathogenic Avian Influenza a H5N1 Virus with Neuraminidases of The 2009 Pandemic H1N1 and a Seasonal H3N2. J Bioterr Biodef 2:104. doi: 10.4172/2157-2526.1000104

Copyright: © 2011 Zhang F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Reassortment of influenza viruses is capable of generating novel virus strains, the emergence of which may come to represent major public health issues. Hemagglutinin (HA) and neuraminidase (NA) are the two major glycoproteins of influenza virus. These play a vital role in both the viral life cycle and evasion of the host immune response. Thus, predicting HA and NA reassortment, and characterizing the biology of HA and NA and of a novel virus are important for the control and prevention of influenza infection.

The HAs and NAs of three simultaneously circulating influenza viruses, a highly pathogenic avian influenza (HPAI) H5N1, the 2009 pandemic H1N1, and a seasonal H3N2, were evaluated by the pseudotyped particle (pp) system. Although the three HAs and NAs showed significant variation in their amino acid (aa) sequence, reassortment successfully generated infectious viral particles. Influenza H5 was demonstrated to have the ability to reassort with NAs from both the 2009 pandemic H1N1 and seasonal H3N2 viruses, resulting in highly infectious virions in both cases. All HAs in pps and wild-type viruses were predominantly HA0. Of the NAs, roughly half of the total N2 was present as a tetramer, 09N1 predominantly existed as a dimmer, and the NA of H5N1 was primarily monomeric. Thus, tetrameric, dimeric, and monomeric NAs were all functional and could fulfill their role in viral life cycle.

Keywords

Google Scholar citation report
Citations : 1129

Journal of Bioterrorism & Biodefense received 1129 citations as per Google Scholar report

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Share This Page
Top