Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Special Issue Article

Implications of Benzoate Induced Alterations in Cell Morphology and Physiology in Pseudomonas aeruginosa TMR2.13 for Potential Application in Bioremediation and Monitoring Approaches

Trelita de Sousa and Saroj Bhosle*
Department of Microbiology, Goa University, Taleigao Plateau, Goa, India
Corresponding Author : Prof. Saroj Bhosle
Department of Microbiology
Goa University, Taleigao Plateau, Goa, India
Tel: +91-0832-6519080
Fax: +91-0832-2452889
E-mail: sarojbhosle@yahoo.co.in
Received February 25, 2012; Accepted March 31, 2012; Published April 02, 2012
Citation:de Sousa T, Bhosle S (2012) Implications of Benzoate Induced Alterations in Cell Morphology and Physiology in Pseudomonas aeruginosa TMR2.13 for Potential Application in Bioremediation and Monitoring Approaches. J Bioremed Biodegrad S1:008 doi:10.4172/2155-6199.S1-008
Copyright: © 2012 de Sousa T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

The aromatic hydrocarbon sodium benzoate induced significant alterations in cell morphology with parallel changes in physiological processes like denitrification and pigment formation during growth of a bacterial strain TMR2.13 in denitrification medium. The isolate obtained from a low nutrient level ecosystem (coastal sand dunes) was identified as Pseudomonas aeruginosa. The culture was capable of growing in up to 3% benzoate as the sole carbon source. The culture, a strong denitrifier, showed changes in nitrite levels in response to benzoate. Presence of benzoate induced a 50% reduction in intermediate nitrite accumulation under well aerated conditions. High benzoate levels caused a delay in growth rate, nitrate reduction activity and prominent decrease in transitional nitrite levels from 1528 μM (without benzoate) to 508 μM (with 1% benzoate). Further, the intensity of pigment production was also enhanced in presence of sodium benzoate indicated by a significant increase in absorbance at 380 nm (pyoverdin peak) and 680 nm (pyocyanin peak). The impact of benzoate was greater on pyoverdin production than on pyocyanin. The alterations depicted by TMR2.13 at high benzoate concentrations in nitrite and pigment levels can be projected with potential application in bioremediation and monitoring studies.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top