Impacts of Human Activities on Shallow Eutrophic Lake
Received Date: Jun 14, 2022 / Accepted Date: Jul 08, 2022 / Published Date: Jul 08, 2022
Abstract
Mercury and its derivatives are dangerous environmental contaminants that may have a biomagnification effect on aquatic ecosystems and human health. Lake sediments can be used to reconstruct previous contamination levels and so identify anthropogenic or natural influences. In this study, the history of Mercury (Hg) deposition in sediments from China’s Chao Lake, a shallow eutrophic lake, over the previous 100 years is examined. According to the findings, the history of Hg deposition during the past 100 years can be divided into three stages. Prior to the 1960s, there was little variation in the Hg concentrations in the sediment cores and little regional variation. Since the 1960s, the concentration of Hg has been steadily rising, with the western half of the lake region showing a higher concentration of contamination than the eastern half. Due to several centralised human-input sources, of the lake region. By examining relationships between Hg and heavy metals (Fe, Co, Cr, Cu, Mn, Pb, and Zn), stable carbon and nitrogen isotopes (d13C and d15N), nutrients, particle sizes, and meteorological parameters, the effects of anthropogenic factors and hydrological change are highlighted. The findings demonstrate that Hg pollution become more severe after the 1960s, mostly as a result of hydrological change, increased regional urbanisation, and the spread of human Hg sources.
Citation: Huo S (2022) Impacts of Human Activities on Shallow Eutrophic Lake. J Ecosys Ecograph 12: 343. Doi: 10.4172/2157-7625.1000343
Copyright: © 2022 Huo S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 612
- [From(publication date): 0-2022 - Nov 23, 2024]
- Breakdown by view type
- HTML page views: 443
- PDF downloads: 169