Research Article
Human Umbilical Vein Endothelial Cells Migration in Matrigel by the Concentration Gradient of Vascular Endothelial Growth Factor
Naoko Obi1,2, Hiroyuki Toda1 and Yasuhiko Tabata1*1Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku Kyoto 606-8507, Japan
2Corporate Technology Research and Development Nissha Printing Co.,Ltd. 3 Mibu Hanai-cho, Nakagyo-ku, Kyoto 604-8551, Japan
- Corresponding Author:
- Yasuhiko Tabata
Department of Biomaterials
Institute for Frontier Medical Sciences
Kyoto University, 53 Kawara-cho Shogoin
Sakyoku Kyoto 606-8507, Japan
Tel: +81 75 751 4121
Fax: +81 75 751 4646
E-mail: yasuhiko@frontier.kyoto-u.ac.jp
Received date: October 16, 2015; Accepted date: December 02, 2015; Published date: December 09, 2015
Citation: Obi N, Toda H, Tabata Y (2015) Human Umbilical Vein Endothelial Cells Migration in Matrigel by the Concentration Gradient of Vascular Endothelial Growth Factor. J Biotechnol Biomater 5:210. doi:10.4172/2155-952X.1000210
Copyright: © 2015 Obi N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Vascular endothelial growth factor (VEGF) has an ability to induce the migration of human umbilical vein endothelial cells (HUVEC). The objective of this study is to prepare several patterns of gelatin hydrogels for VEGF release and evaluate the 3-dimensional pattern of HUVEC migration in Matrigel by VEGF release. VEGF was incorporated into the gelatin hydrogel sheet to achieve the sustained release and generate the concentration gradient of VEGF. When Matrigel was put on the gelatin hydrogel sheet incorporating VEGF, the VEGF was released into the Matrigel to form a gradient pattern of VEGF concentration in the Matrigel with time and the area of VEGF released by the Matrigel depended upon the position of gelatin hydrogel sheet put on. In addition, HUVEC were seeded on the surface of Matrigel to evaluate the ability of VEGF released to enhance the cell migration into the Matrigel. HUVEC were migrated with time into the Matrigel to the direction and the position of VEGF released. It is concluded that the VEGF release induces the migration of HUVEC in Matrigel based on the concentration gradient and the position of VEGF formed in Matrigel.