Review Article
Histone Deacetylase Inhibitor for Neurodegenerative Diseases: A Possible Medicinal Strategy by Prevention of ER Stress-Mediated Apoptosis and Induction of Neurite Elongation
Koji Shimoke1,2*, Takuma Tomioka2, Kouta Okamoto2, Daichi Fujiki2, Shinichi Uesato1,2, Hitoshi Nakayama3 and Toshihiko Ikeuchi1,2 | |
1Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Japan | |
2Graduate School of Science and Engineering, Kansai University, Japan | |
3Department of Pharmacology, Nara Medical University, School of Medicine, Japan | |
Corresponding Author : | Shimoke K Laboratory of Neurobiology Faculty of Chemistry, Materials and Bioengineering Kansai University, 3-3-35 Yamate-cho Suita, Osaka 564-8680, Japan Tel: +81-6-6368-0853 Fax: +81-6-6330-3770 E-mail: shimoke@kansai-u.ac.jp |
Received February 06, 2013; Accepted March 02, 2013; Published March 04, 2013 | |
Citation: Shimoke K, Tomioka T, Okamoto K, Fujiki D, Uesato S, Nakayama H, et al. (2013) Histone Deacetylase Inhibitor for Neurodegenerative Diseases: A Possible Medicinal Strategy by Prevention of ER Stress-Mediated Apoptosis and Induction of Neurite Elongation. Clin Pharmacol Biopharm S1:006. doi:10.4172/2167-065X.S1-006 | |
Copyright: © 2013 Shimoke K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Abstract
Neurite outgrowth is primarily necessary step to construct a neuronal network. If this step is collapsed, neurons are died and neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, which are known to induce endoplasmic reticulum (ER) stress-mediated apoptosis, are occurred.
It has been elucidating that histone deacetylase (HDAC) plays a crucial role in the silencing of gene expression by the specific mechanisms. Thus, HDAC inhibitors have been shown to induce specific genes. We reported the upregulation of the nur77 gene, followed by histone modification via the protein kinase A signaling pathway or HDAC inhibitor-mediated molecular mechanisms. Then, we also focused on neurite outgrowth as a functional neuronal marker, and then described molecular targets and progressive pharmaceutical care for neurodegenerative disorders by using K-350. We propose that this kind of the candidate compound might contribute to build the therapeutic strategy for neurodegenerative diseases.