Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Hexachlorocyclohexane Contamination and Solutions: Brief History and Beyond. Emerging Model to Study Evolution of Catabolic Genes and Pathways

Nayyar N and Lal R*
Department of Zoology, University of Delhi, Delhi-110 007, India
*Corresponding Author : Lal R
Department of Zoology
University of Delhi, Delhi-110 007, India
Tel: +91112766625560
E-mail: ruplal@gmail.com
Received: January 27, 2016; Accepted: February 29, 2016; Published: March 05, 2016
Citation: Nayyar N, Lal R (2016) Hexachlorocyclohexane Contamination and Solutions: Brief History and Beyond. Emerging Model to Study Evolution of Catabolic Genes and Pathways. J Bioremed Biodeg 7:338. doi:10.4172/2155-6199.1000338
Copyright: © 2016 Nayyar N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Recent revelation of the evolution of Hexachlorocyclohexane (HCH) degrading sphingomonads and their acquisition of lin genes for the degradation of HCH isomers at the HCH dumpsites and HCH contaminated sites has lead us to consider that bacteria employ science and chemistry beyond scientific imagination. The HCH contamination of the environment portrays one of the best examples to highlight the evolution of catabolic genes and pathways leading to survival of these bacteria at HCH concentrations as high as 450 mg/g soil. While contamination of the environment with HCH has created several health related issues, this compound has not only enabled us to study the marvel of HCH degradation that sphingomonads employ but has also emerged as a good model to study the evolution of catabolic genes, especially the lin genes. The potential of HCH degradation by these sphingomonads can be tapped in order to create a phenomenal and large scale bioremediation technology. This review describes briefly the massive contamination of our environment by HCH isomers, along with the spontaneous evolution of the versatile HCH degradation pathways in sphingomonads and lin genes in response to HCH.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top