Harnessing Advanced Nanomaterials and Metal-Organic Frameworks for Catalyzing Biodiesel Production from Microalgal Lipids: A Comprehensive Overview
Received Date: Nov 01, 2023 / Published Date: Nov 30, 2023
Abstract
Expanding energy requests require investigating inexhaustible, eco-accommodating (green), and financially savvy energy assets. Among different wellsprings of biodiesel, microalgal lipids are an amazing asset, attributable to their high overflow in microalgal biomass. A revolutionary approach to resolving the energy crisis is transesterification, which is sparked by cutting-edge materials like nanomaterials and metal-organic frameworks (MOFs). The transesterification of lipids into biodiesel using catalysts based on the aforementioned advanced materials is the primary focus of this review, which goes into greater detail on the conversion of microalgal lipids (including algae that have been genetically modified) into biodiesel. Besides, current difficulties looked by this cycle for modern scale upgradation are given future viewpoints and finishing up comments. These materials offer higher change (>90%) of microalgae into biodiesel. Nanocatalytic processes, come up short on need for higher tension and temperature, which works on the general interaction for modern scale application. Green biodiesel creation from microalgae offers preferable fuel over petroleum derivatives with regards to execution, quality, and less natural mischief. The synthetic and warm strength of cutting edge materials (especially MOFs) is the fundamental advantage of the blue reusing of impetuses. High level materials-based impetuses are accounted for to decrease the gamble of biodiesel pollution. While virtue of glycerin as side item makes it valuable skin-related item.
Citation: Jeyaraj A (2023) Harnessing Advanced Nanomaterials and Metal-Organic Frameworks for Catalyzing Biodiesel Production from Microalgal Lipids: AComprehensive Overview. Biochem Physiol 12: 436.
Copyright: © 2023 Jeyaraj A. This is an open-access article distributed under theterms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author andsource are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Usage
- Total views: 187
- [From(publication date): 0-2024 - Dec 03, 2024]
- Breakdown by view type
- HTML page views: 145
- PDF downloads: 42