Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Genotype × Environment Interaction and Stability Estimate for Grain Yield of Upland Rice Genotypes in Nigeria

Maji AT1, Bashir M2, Odoba A1, Gbanguba AU1 and Audu SD1*

1National Cereals Research Institute Badeggi, Niger state. Nigeria

2National Biotechnology Development Agency, Lugbe, Abuja, Nigeria

Corresponding Author:
Audu SD
National Cereals Research Institute Badeggi
Niger state, Nigeria
E-mail: Saudatu28@gmail.com

Received December 23, 2014; Accepted February 26, 2015; Published February 28, 2015

Citation: Maji AT, Bashir M, Odoba A, Gbanguba AU, Audu SD (2015) Genotype × Environment Interaction and Stability Estimate for Grain Yield of Upland Rice Genotypes in Nigeria. J Rice Res 3:136. doi: 10.4172/2375-4338.1000136

Copyright: © 2015 Maji AT, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract

Genotype × environmental interaction and stability estimate were investigated on grain yield of 30 upland rice varieties at Sabon Daga, Amakama, Yandev and Uyo in 2003. The experiments were laid out in a randomised complete block design with three replications. AMMI Anova for grain yield revealed no significant different among genotypes (P<0.01), but there is significant difference on environments and the interaction. The significant different on the interaction indicates that, the genotypes respond differently across the different environments. The partitioning of GGE through GGE biplot analysis showed that principal component1 and principal component 2 accounted for 62.21% and 28.57% of GGE sum of squares respectively, explaining a total of 90.78% variation. AMMI 2 biplot revealed that, genotype ART16-9-3-15-3-B-1-1 (8) gave the highest mean yield of 2925 kg/ha with high main additive effect better than the check varieties. Hence, the genotype would be considered more adapted to wide environments than the rest of genotypes. Environments, such as Sabon Daga and Amakama could be regarded as a more stable site for high yielding rice varieties compare to the other locations.

Keywords

Top