Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Functionalized-Graphene/Polyaniline Nanocomposites as Proficient Energy Storage Material: An Overview

Dipanwita Majumdar*

Department of Chemistry, Barasat Government College, Kolkata-700124, West Bengal, India

Corresponding Author:
Dipanwita Majumdar
Department of Chemistry,
Barasat Government College, Barasat, Kolkata-700124, West Bengal, India
Tel: 09903457372
E-mail: wbesdmajumdar@gmail.com

Received Date: October 03, 2016; Accepted Date: November 05, 2016; Published Date: November 15, 2016

Citation: Majumdar D (2016) Functionalized-Graphene/Polyaniline Nanocomposites as Proficient Energy Storage Material: An Overview. Innov Ener Res 5:145.

Copyright: © 2016 Majumdar D. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Graphene-based materials owing to their unique and versatile properties, such as, larger surface area, high electrical conductivity, appreciable chemical stability and remarkable mechanical behavior, find promising applications in supercapacitors and other energy storage devices. Polyaniline (PANI), with outstanding high electrical conductivity, reversible redox, and doping/dedoping properties, and high environmental stability, has also been studied in great detail. In recent years, one- and two-dimensional (1D/2D) PANI nanostructures, including nanofibers, nanowires, nanorods, and nanotubes, and nanofilms, etc., have attracted much attention across scientific and engineering disciplines with the expectation that these materials could exhibit superior properties compared to their bulk counterparts in terms of mechanical strength, and charge transport. Thus efforts have been made to coalesce the individual properties so as to obtain high quality materials. Graphene/ polyaniline nanocomposites are easy processing, cost-effective materials. Besides, morphological variations also assist in tuning the effective area, porosity, electrical conductivity and consequently, the specific capacitance of these nanocomposites. Thus, the main focus of current research lies on designing, architecturing as well as amplifying their electrochemical behavior in such an order so to obtain promising applications in future electronics which has been highlighted in details in the present overview.

Keywords

Top