Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Evaluation of Heavy Metals Resistant Micrococcus sp. Isolated from Rivers in Basra, Iraq

Maki Anwar1, Sharif Ali2 and Al-Taee Asaad1*

1Marine Science Center, Basra University, Basra, Iraq

2College of Education for Pure Science, Basra University, Basra, Iraq

*Corresponding Author:
Asaad MR Al-Taee
Marine Science Center
Basra University, Basra, Iraq
Tel: 9647801405716
Fax: amraltaee@yahoo.com

Received date: January 04, 2017; Accepted date: January 27, 2017; Published date: January 31, 2017

Citation: Anwar M, Ali S, Asaad AT (2017) Evaluation of Heavy Metals Resistant Micrococcus sp. Isolated from Rivers in Basra, Iraq. J Bioremediat Biodegrad 8:383. doi: 10.4172/2155-6199.1000383

Copyright: © 2017 Anwar M, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The present study aims to isolation, identification and characterization of heavy metal resistant bacteria from six rivers in Basra Southern Iraq. Two species of Micrococcus (M. halobius and M. kristinae) were isolated on the basis of morphological and biochemical profiles and selected based on high levels of heavy metals (cadmium, lead, copper and nickel) resistance. The concentrations of dissolved heavy metals (Cd, Pb, Cu and Ni) in rivers were determined. The maximum tolerance concentration (MTC) of isolates against Pb, Cu, Cd and Ni was determined in solid media after 72 h incubation. All isolates were resistant to Pb (2200-2600) μg mL-1, Cu (400) μg mL-1, Cd (300-400) μg mL-1 and Ni (200-300) μg ml-1. Living biomass of M. halobius and M. kristinae were used for the removal of heavy metal ions at different concentrations (25, 50 and 100) μg mL-1 from aqueous metal solutions. The best concentration of removal was 25 μg mL-1 after 72 h incubation at 120 rpm. Percent removal efficiency of M. kristinae was 47.22, 26.26 for Cu and Pb respectively, and for M. halobius was 31.52, 27.87 for Cd and Ni respectively.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top