ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Expert Review   
  • J Bioremediat Biodegrad 2023, Vol 14(5): 5
  • DOI: 10.4172/2155-6199.1000580

Environmental Biodegradation: A Path towards Sustainable Coexistence

Mari Clera Coste*
Department of Chemical and Biological Engineering, Egypt
*Corresponding Author : Mari Clera Coste, Department of Chemical and Biological Engineering, Egypt, Email: MariClera12@gmail.com

Received Date: Sep 01, 2023 / Published Date: Sep 29, 2023

Abstract

Environmental biodegradation, a natural process driven by microorganisms, has gained prominence as a critical tool in mitigating contemporary environmental challenges. This abstract explores recent developments in the field, emphasizing its pivotal role in addressing emerging environmental concerns.

Environmental biodegradation encompasses the breakdown of organic and inorganic substances by microorganisms, facilitating the recycling of compounds in various ecosystems. Recent trends and innovations in this field have the potential to revolutionize the way we approach environmental sustainability.

One of the foremost trends is the biodegradation of emerging contaminants, including pharmaceuticals and synthetic chemicals, highlighting the adaptability of microorganisms to evolving pollution sources. In agriculture, biodegradation of pesticides and soil contaminants is contributing to sustainable farming practices.

The global plastic pollution crisis has led to intense research on plastic biodegradation, with a focus on natural microbial processes and engineered microorganisms. This presents promising solutions to curb the proliferation of plastic waste.

Biogeochemical cycling, particularly in aquatic environments, plays a pivotal role in mitigating climate change.

Understanding microbial-driven carbon cycling and its contribution to carbon sequestration is a key focus of recent research.

Environmental biodegradation also remains central to the remediation of polluted sites, with an emphasis on integrating biodegradation with other remediation technologies for enhanced efficiency.

Advancements in metagenomics and Omics technologies are transforming our understanding of microbial communities involved in biodegradation, enabling researchers to optimize biodegradation processes.

In conclusion, environmental biodegradation is fundamental to environmental sustainability, offering eco-friendly, cost-effective, and natural solutions to pollution and resource management. As research in this field advances, environmental biodegradation will play an increasingly critical role in addressing emerging environmental challenges, ultimately paving the way for a more sustainable and harmonious coexistence between humanity and the environment.

Citation: Coste MC (2023) Environmental Biodegradation: A Path towards Sustainable Coexistence. J Bioremediat Biodegrad, 14: 580. Doi: 10.4172/2155-6199.1000580

Copyright: © 2023 Coste MC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top