Electrochemical sensors based on diaminonaphthalene and carbon nanofiber composites modified carbon paste electrode
*Corresponding Author:
Copyright: © 2021 . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
A great challenge in the area of heavy metal trace detection is the development of electrochemical techniques and devices which are simple, environmentally friendly, robust, and selective with low detection limit and allowing fast measurements. During the last decades, different approaches have been used to develop high-performance electrochemical sensors based on carbon nanostructures and conducting polymers. The combination of carbon materials with polymers is expected to improve the properties of these materials for electroanalytical purposes. The aim of this work is the development of nanocomposites based on Carbon nanotube (CNT) or carbon nanofibers (CNF) and conducting polymers. The oxidative electropolymerization of diaminonaphthalene derivatives in a simple way and reproducible one-step procedure into carbon paste electrode (CPE) modified with carbon nanofibers leads to a conducting polymer that can be applied for chemicals sensing. This work reports two applications related to polydiaminonaphthalene [poly (DAN)] or polypyrrole prepared on carbon paste electrode and carbon nanofibers in the presence of Nickel Nanoparticles (NiNPs). The strategies applied to improve the property of conducting polymer obtained are discussed. The dispersion, morphology, conductivity and structure of the modified electrode are characterized by scanning electron microscopy, cyclic voltammetry, quartz crystal microbalance and electrochemical impedance spectra. The resulting polymer is conducting with specific proprieties and shows a good selectivity toward different ions and was used for detection of heavy metals or electrocatalytic oxidation of methanol.