Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Electrochemical Biosensors Based on ZnO Nanostructures to Measure Intracellular Metal Ions and Glucose | OMICS International | Abstract
ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Electrochemical Biosensors Based on ZnO Nanostructures to Measure Intracellular Metal Ions and Glucose

Muhammad H. Asif1,2*, Fredrik Elinder3 and Magnus Willander2

1Materials Research, Department of Physics, COMSATS Institute of information Technology, Lahore-54000, Pakistan

2Department of Science and Technology, Campus Norrköping, Linköping University, SE-601 74 Norrköping, Sweden

3Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, SE- 581 85 Linköping, Sweden

*Corresponding Author:
Muhammad H. Asif
Materials Research, Department of Physics
COMSATS institute of Information Technology- Lahore-54000, Pakistan
Tel: +46-11363119
Fax: +46-11363270
E-mail: muhas43@gmail.com, muhammadasif@ciitlahore.edu.pk

Received date: July 01, 2011; Accepted date: September 26, 2011; Published date: September 30, 2011

Citation: Asif MH, Elinder F, Willander M (2011) Electrochemical Biosensors Based on ZnO Nanostructures to Measure Intracellular Metal Ions and Glucose. J Anal Bioanal Tech S7:003. doi: 10.4172/2155-9872.S7-003

Copyright: © 2011 Asif MH, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Zinc oxide (ZnO) nanostructures have attracted much interest for intracellular electrochemical measurements because of its large surface area, and its biocompatible properties. To design intracellular biosensors for metal ions and glucose, we grew ZnO nanorods on the tip of borosilicate glass capillaries (0.7µm in diameter) and characterized the nano-scale structure with field-emission scanning electron microscopy and high-resolution transmission electron microscopy. The ZnO nanorods were functionalized accordingly for intracellular free metal ions or glucose measurements. Selectivity was achieved by using a metal-ion selective plastic membrane or glucose oxidase enzyme for glucose measurements. These functionalized ZnO nanorods showed high sensitivity and good biocompatibility for intracellular environments. Human adipocytes and frog oocytes were used for determinations of intracellular free metal ions and glucose concentrations. In this review, we discuss the simple and direct approach for intracellular measurements using ZnO nanostructure-based potentiometric biosensors for clinical and nonclinical applications. The performance of ZnO nanostructure-based intracellular sensor can be improved through engineering of morphology, effective surface area, functionality, and adsorption/desorption capability. This study paves the way to find applications in biomedicine by using this simple and miniaturized biosensing device.

Keywords

Top