Effect of Alloying Elements on Properties of Biodegradable Magnesium Composite for Implant Application
Received Date: Oct 01, 2017 / Accepted Date: Oct 10, 2017 / Published Date: Oct 18, 2017
Abstract
This research aims to improve the mechanical properties and corrosion resistance of magnesium based composites with addition of zinc and manganese as alloying elements. Mg-Zn-HA, Mg-Mn-HA and Mg-Zn-MnHA composites with Mg-HA composite as control have been fabricated through powder metallurgy route. 1.5wt% of alloying elements was added into magnesium matrix for each composite. The composites were prepared by mechanical alloying followed by compaction under 400 MPa and sintering at 400°C. The results showed that with additional alloying element, micro-hardness, compressive strength and corrosion resistance of composites are significantly enhanced compared with Mg-HA composite. The Mg-Zn-Mn-HA composite showed the best properties among Mg-based composite with density, micro-hardness and compressive strength of 1.77 g/cm3, 65.5 HV and 210 MPa respectively all in range of properties of human bone. Immersion test in Hank’s Balanced Salt Solution (HBSS), weight loss of Mg-Zn-Mn-HA reduces to 0.61% when immerse for 5 hours and to 6.20% for 24 hours immersion.
Keywords: Alloying elements; Magnesium-based composite; Mechanical alloying; Mechanical properties; Corrosion
Citation: Hussain Z, Mohd Isa N, Dhindaw BK (2017) Effect of Alloying Elements on Properties of Biodegradable Magnesium Composite for Implant Application. J Powder Metall Min 6: 179. Doi: 10.4172/2168-9806.1000179
Copyright: © 2017 Hussain Z, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 6627
- [From(publication date): 0-2017 - Dec 19, 2024]
- Breakdown by view type
- HTML page views: 5667
- PDF downloads: 960