Diagnosis and Detection of Infected Tissue of Covid-19 Use of Pcr-Based In Northern Tanzania
Received Date: Sep 01, 2022 / Accepted Date: Sep 30, 2022 / Published Date: Sep 30, 2022
Abstract
The COVID-19 epidemic has put the world's scientists to the test. The international community works to develop fresh ways as quickly as feasible for the diagnosis and treatment of COVID-19 patients [1]. Currently, a reverse transcription-polymerase chain reaction is a trustworthy tool for identifying infected patients [2]. The process is time- and money-consuming. Designing innovative methods is crucial as a result. In this study, we used X-ray pictures of the lungs to identify and diagnose COVID-19 patients using three deep learning-based approaches. We proposed two algorithms deep neural network (DNN) on the fractal characteristic of images and convolutional neural network approaches using the lung images directly for the diagnosis of the condition [3]. The classification of the results reveals that the proposed CNN architecture a new coronavirus disease first appeared in Wuhan, China, in December 2019, and it quickly spread over the world [4]. It has so far caused millions of confirmed illnesses and thousands of fatalities worldwide. Therefore, it is crucial to identify COVID-19 as soon as possible in order to stop its spread and lower its mortality [5]. Currently, reverse transcription polymerase chain reaction is the gold standard in the diagnosis of COVID-19 [6]. In this test, viral nucleic acid from sputum or a nasopharyngeal swab is found. This testing mechanism has a few drawbacks [7]. First off, this test requires particular materials that are not generally accessible. Additionally, this test takes a lot of time and has a poor true positive sensitivity rate [8]. DNNs may extract intelligence from the dataset, which results in superhuman performances in a variety of applications, thanks to the availability of enormous datasets and strong graphical processing units. Additionally, recent research has looked towards effective DNN architecture synthesis [9].
Keywords: Diabetic Neuropathy; Hyperglycemia; Endocrine Genetics
Citation: Reemst S (2022) Diagnosis and Detection of Infected Tissue of Covid-19 Use of Pcr-Based In Northern Tanzania. J Diabetes Clin Prac 5: 163.
Copyright: © 2022 Reemst S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Usage
- Total views: 880
- [From(publication date): 0-2022 - Nov 21, 2024]
- Breakdown by view type
- HTML page views: 710
- PDF downloads: 170