Review Article
Development and Validation of UPLC Method for the Determination of Duloxetine Hydrochloride and Its Impurities in Active Pharmaceutical Ingredient
Rohith T1, Ananda S1,2*, Sajan PG2 and Gowda NM3
1Deepta Laboratories, Vishsweshwara Nagar, Mysore, India
2Department of Studies in Chemistry, Manasagangothri, University of Mysore, India
3Department of Chemistry, Western Illinois University, One University Circle, Macomb, USA
- *Corresponding Author:
- Ananda S
Department of Studies in Chemistry
Manasagangothri, University of Mysore, India
Tel: +91 821 2419663
Fax: +91241936
E-mail: snananda@yahoo.com
Received Date: December 17, 2014; Accepted Date: February 21, 2015; Published Date: February 27, 2015
Citation: Rohith T, Ananda S, Sajan PG, Gowda NM (2015) Development and Validation of UPLC Method for the Determination of Duloxetine Hydrochloride and Its Impurities in Active Pharmaceutical Ingredient. J Anal Bioanal Tech 6:234. doi: 10.4172/2155-9872.1000234
Copyright: © 2015 Rohit T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
A suitable, rapid, sensitive and accurate ultra-performance liquid chromatography (UPLC) method was developed for the quantitative determination of Duloxetine hydrochloride and its impurities in active pharmaceutical ingredient. Chromatographic separation was achieved on shim-pack XR-ODS II (3.0 × 100 mm, 2.2 μm), and the gradient eluted within a period of time, that is, 15 minutes. The eluted compounds were monitored at 230 nm. The flow rate was 0.9 ml/min and the column oven temperature was maintained at 40ºC. The resolution of Duloxetine hydrochloride and 12 impurities (potential impurity, process related impurity and degradation products) were greater than 1.3. The correlation coefficient (r2>0.99) values indicated clear correlations between the investigated compound concentrations and their peak areas within the quantitation limit to 200% level. The performance of the method was validated according to the present ICH guidelines for specificity, quantitation limit, detection limit, linearity, accuracy, precision, ruggedness and robustness. The recoveries obtained (93.28-102.41%) ensured the accuracy of the developed methods.