ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Development and Validation of a GC-MS with SIM Method for the Determination of Trace Levels of Methane Sulfonyl Chloride as an Impurity in Itraconazole API

Mannem Durga Babu*, Surendra Babu K and Medikondu Kishore

SVRM College (Autonomous) and Research Centre, Acharya Nagarjuna University, Nagaram, Andhra Pradesh, India

*Corresponding Author:
Mannem Durga Babu
SVRM College, Acharya Nagarjuna University
Nagaram, Andhra Pradesh, India
Tel: +918688850113
E-mail: mannem.durgababu@gmail.com

Received: March 06, 2016 Accepted: April 01, 2016 Published: April 08, 2016

Citation: Babu MD, Babu SK, Kishore K (2016) Development and Validation of a GC-MS with SIM Method for the Determination of Trace Levels of Methane Sulfonyl Chloride as an Impurity in Itraconazole API. J Anal Bioanal Tech 7:316. doi:10.4172/2155-9872.1000316

Copyright: © 2016 Babu MD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Selected-ion monitoring (SIM) mode mass selective detection was developed and validated for the trace analysis of an impurity, methane sulfonyl chloride as an impurity in Itraconazole (ICR) active pharmaceutical ingredient (API). The analytical method validation is essential for analytical method development and tested extensively for specificity, linearity, accuracy, precision, range, detection limit, quantization limit, and robustness. Accurate and precise quantitation of the impurity in drug substance was achieved with external standardization. In this research work, we present a summary of the method development and validation work performed on Methane sulfonyl chloride (MSC) in Itraconazole API by GC/MS-SIM technique. In the method development phase, the analytical procedure that is appropriate for the quantitative analysis of the MSC in ICR at ppm level was established and evaluated.

Keywords

Top