Determination of Intracellular Concentrations of Nucleoside Analogues and their Phosphorylated Metabolites
Received Date: Feb 24, 2014 / Accepted Date: Apr 28, 2014 / Published Date: Apr 30, 2014
Abstract
Nucleoside analogues are broadly used in antiviral and anti-tumor therapy. The clinical response depends on the intracellular formation of the pharmacologically active mono-, di-, and tri-phosphates moiety. So it is not advisable to simply monitore plasma concentration without concerning the variation of concentration of active constituent in some particular effector cell apparently while this kind of drugs are applied to the clinical therapy. Therefore, determination of intracellular concentration of nucleoside analogues and their phosphorylated metabolites is of great significance. In this review, several methods including RP-HPLC, LC-MS/MS, radioimmunoassay and capillary electrophoresis (CE) for analysis of nucleoside analogues are discussed. Because of the complex biological matrices as well as the extremely low concentration of target analytes, cell lysis techniques and sample pretreatment methods such as protein precipitation (PP) and solid-phase extraction (SPE) are also discussed.
Keywords: Review; Nucleoside analogues; Phosphorylated metabolite; Intracellular concentration
Citation: Lingli Mu, Xingling Liu, Sanwang Li, Fang Tang, Peng Yu (2014) Determination of Intracellular Concentrations of Nucleoside Analogues and their Phosphorylated Metabolites. J Mol Pharm Org Process Res 2: 112. Doi: 10.4172/2329-9053.1000112
Copyright: ©2014 Lingli Mu, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 15986
- [From(publication date): 4-2014 - Dec 18, 2024]
- Breakdown by view type
- HTML page views: 11386
- PDF downloads: 4600