ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Current Trends in Ubiquitous Biosensing

Dimitra N Stratis-Cullum* and Amethist S Finch

US Army Research Laboratory, RDRL-SEE-B, Adelphi, USA

*Corresponding Author:
Dr. Stratis-Cullum DN
US Army Research Laboratory, RDRL-SEE-B
2800 Powder Mill Road, Adelphi, MD 20783, USA
E-mail: dimitra.stratiscullum1@us.army.mil

Received date: March 19, 2013; Accepted date: May 15, 2013; Published date: May 17, 2013

Citation: Stratis-Cullum DN, Finch AS (2013) Current Trends in Ubiquitous Biosensing. J Anal Bioanal Tech S7:009. doi:10.4172/2155-9872.S7-009

Copyright: © 2013 Stratis-Cullum DN, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Biosensing technology is not currently capable of widespread use outside of a laboratory environment due to significantly limitation in bioreceptor function and production, as well as in the overall size, weight, and cost of the sensing platform. However, as technology continues to advance, biosensors could truly become ubiquitous, employing social media and personal electronic devices for mundane yet powerful capabilities. In the near future, point-of-care diagnostics in third-world countries could save millions of lives and revolutionize the healthcare industry worldwide. Recent trends show many of the traditional barriers to realizing this vision will soon be overcome. In this paper we review exciting trends in the development of synthetic reagents, fluidic integration, and mobile platforms that are necessary for ubiquitous biosensing capabilities.

Keywords

Top