Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Coral Communities, in Contrast to Fish Communities, Maintain a High Assembly Similarity along the Large Latitudinal Gradient along the Saudi Red Sea Coast

Sawall Y1*, Kürten B1, Hoang BX1, Sommer U1, Wahl M1, Al-Sofyani A2, Al-Aidaroos AM2, Marimuthu N2, Khomayis HS2 and Gharbawi WY2

1 Helmholtz Center for Ocean Research (GEOMAR), Experimental Ecology group, Duesternbrookerweg 20, 24105 Kiel, Germany

2 Faculty of Marine Science, Department of Marine Biology, King Abdulaziz University, Post Box No. 80207, Jeddah- 21589, Saudi Arabia

*Corresponding Author:
Sawall Y
Helmholtz Center for Ocean Research (GEOMAR)
Experimental Ecology group
Duesternbrookerweg 20
24105 Kiel, Germany
Tel: +49(0)4316004577
E-mail: ysawall@geomar.de

Received date: September 27, 2013; Accepted date: November 28, 2013; Published date: February 14, 2014

Citation: Sawall Y, Kürten B, Hoang BX, Sommer U, Wahl M, et al. (2014) Coral Communities, in Contrast to Fish Communities, Maintain a High Assembly Similarity along the Large Latitudinal Gradient along the Saudi Red Sea Coast. J Ecosys Ecograph S4:003. doi:10.4172/2157-7625.1000s4-003

Copyright: © 2014 Sawall Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The Saudi Arabian Red Sea coast is characterized by a strong environmental gradient from north (28.5°N) to south (16.5°N) with challenging conditions for coral growth particularly in the south (high temperature and nutrient input). We investigated whether assemblies of reef-building corals and the distribution of functional groups follow a latitudinal pattern in the Red Sea, and whether these changes affect the assembly structure of coral associated organisms (e.g. fishes). Functional groups were defined based on life-history traits and functional role. 13 reefs along the north-south gradient, including 5 potentially polluted reefs were investigated. Results showed a substantially weaker latitudinal shift in the assembly structure of coral communities than of fishes communities and of other benthic reef taxa. Competitive fast growing branching and tabular species (mainly Acropora), as well as rather stresstolerant slow growing bulky species (e.g. Porites, Goniastrea, Favites, Favia) were fairly evenly distributed along the north-south axis despite strong changes of environmental conditions. This seems on the one hand attributable to the high species richness within a given functional group (functional redundancy) and on the other hand to a high acclimatization / adaptation potential of some Red Sea coral species. The prime ecosystem service of the coral community, the provision of a habitat complex, is thereby maintained throughout the gradient. In contrast to the coral community, the assembly of the fish community shifts along the environmental gradient with higher abundances of small wrasses and butterfly fishes in the north, and overall higher abundance of fishes including large fishes in the south. This shift seems linked to higher food availability in the south. Altered assembly structures of coral communities were found in reefs close to a source of pollution with either an increased relative abundance of stresstolerant species or a general decrease of coral abundance, latter case accompanied by a substantial reduction in fish abundance.

Keywords

Google Scholar citation report
Citations : 2854

Journal of Ecosystem & Ecography received 2854 citations as per Google Scholar report

Journal of Ecosystem & Ecography peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Online Access to Research in the Environment (OARE)
  • Open J Gate
  • Genamics JournalSeek
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
Share This Page

http://sacs17.amberton.edu/

Top