Control Over River Bank Erosion: A Case Study of Ganetti Station, Northern States, Sudan
Received Date: Jul 07, 2015 / Accepted Date: Jul 29, 2015 / Published Date: Aug 08, 2015
Abstract
The Ganetti station soil erosion model was used to quantify the amount of runoff in the upper catchment that takes into account effect of land cover change and also how different factors affect surface runoff. The study is constructed using the mathematical modeling language which allows for great flexibility and GIS that uses a raster type representation of the catchment which allows for a detailed representation of the processes. The results show not only the total runoff at the outlet but also the amount of sediment. The overall objectives of this work is to demonstrate bank erosion control using image processing and hydrological model for River bank erosion based on the time series, assess soil erosion in sub-watershed, use Sediment Transport Index (STI) to replace the slope gradient in the revised MMF model and assess erosion prone areas in inaccessible land areas. The Bank Stability and Toe Erosion Model is a physically-based model. It represents the failure by shearing of a soil block of variable geometry and the erosion by flow of bank and bank toe material. The effect of toe erosion, vegetative treatments or other bank and bank toe protection measures can be illustrated by calculating the actual Factor of Safety (Fs) of the bank.
Keywords: Factor of safety and beaching; Ganetti station; River bank erosion
Citation: Kheiralla KM, Siddeg AS (2015) Control Over River Bank Erosion: A Case Study of Ganetti Station, Northern States, Sudan. J Earth Sci Clim Change 6: 287. Doi: 10.4172/2157-7617.1000287
Copyright: © 2015 Kheiralla KM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 18185
- [From(publication date): 8-2015 - Nov 22, 2024]
- Breakdown by view type
- HTML page views: 13527
- PDF downloads: 4658