Journal of Plant Genetics and Breeding
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Short Communication   
  • J Plant Genet Breed 2024, Vol 8(3): 208
  • DOI: 10.4172/jpgb.1000208

Comprehensive Examination of Linseed and Sunflower Seed Oil's Nutritional and Oxidative Stability

Emilia Arson*
Faculty of Agriculture, University Goce Delcev, Macedonia
*Corresponding Author : Emilia Arson, Faculty of Agriculture, University Goce Delcev, Macedonia, Email: emilia@ar.com

Received Date: May 01, 2024 / Published Date: May 30, 2024

Abstract

This study presents a detailed analysis of the nutritional composition and oxidative stability of linseed and sunflower seed oils, two commonly used edible oils with distinct nutritional profiles. The investigation aimed to elucidate their potential as dietary sources of essential fatty acids and antioxidants, as well as to compare their susceptibility to oxidative degradation under various storage conditions. The nutritional composition analysis revealed that both linseed and sunflower seed oils are rich sources of polyunsaturated fatty acids (PUFAs), particularly linoleic acid (LA) and alpha-linolenic acid (ALA). However, linseed oil exhibited substantially higher ALA content compared to sunflower seed oil, making it a valuable source of omega-3 fatty acids.

To evaluate the oxidative stability, both oils were subjected to accelerated oxidation tests, including the Rancimat method and the Schaal oven test, under controlled temperature and airflow conditions. The oxidative stability index (OSI) values obtained from the Rancimat test indicated that linseed oil exhibited superior resistance to oxidation compared to sunflower seed oil, likely attributed to its higher ALA content and presence of natural antioxidants. Furthermore, the effects of storage conditions, such as temperature, light exposure, and packaging type, on the oxidative stability of both oils were investigated. Results demonstrated that linseed oil maintained its oxidative stability more effectively than sunflower seed oil under various storage conditions, highlighting its potential as shelf-stable dietary oil. In conclusion, this comprehensive examination underscores the nutritional superiority and enhanced oxidative stability of linseed oil compared to sunflower seed oil. Incorporating linseed oil into the diet may offer additional health benefits attributed to its higher ALA content and superior resistance to oxidation, making it promising dietary oil for promoting overall health and well-being.

Citation: Emilia A (2024) Comprehensive Examination of Linseed and SunflowerSeed Oil's Nutritional and Oxidative Stability. J Plant Genet Breed 8: 208. Doi: 10.4172/jpgb.1000208

Copyright: © 2024 Emilia A. This is an open-access article distributed under theterms of the Creative Commons Attribution License, which permits unrestricteduse, distribution, and reproduction in any medium, provided the original author andsource are credited.

Top