ISSN: 2168-9652

Biochemistry & Physiology: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Biochem Physiol 2018, Vol 7(1): 227
  • DOI: 10.4172/2168-9652.1000227

Comparison of Extremely Halophilic Archaea Isolated from Three Salt Lakes in China

Wen H*, Yin X#, Gao B, Su S and Xu X
School of Life Science, JIANGSU NORMAL UNIVERSITY, Jiangsu, People’s Republic of China
#Contributed equally to this work
*Corresponding Author : Wen H, School of Life Science, JIANGSU NORMAL UNIVERSITY, Jiangsu, People’s Republic of China, Tel: +86 13815310346, Email: wenhy@jsnu.edu.cn

Received Date: Dec 15, 2017 / Accepted Date: Jan 30, 2018 / Published Date: Feb 07, 2018

Abstract

There’re many kinds of extremely halophilic archaea living in salt lakes all over the world and the ecological environment of lakes can affect their archaeal species. To illustrate the relationships between archaeal species and salt lake environment, we isolated and cultured 25 extremely halophilic archaeal strains from three salt lakes in China (Gou Salt Lake, Huama Salt Lake and Yuncheng Salt Lake). According to the 16S rRNA gene sequence analysis and the construction of Neighbor-Joining phylogenetic trees, the isolates were closely related to each other. The most dominant archaea was genus halorubrum (88.0%), followed by genus haloarcula (8.0%) and a small amount of genus halovivax (4.0%). Yuncheng salt lake (YC) had the most abundant number of species. Through the study of the basic information of the three sampling sites, we considered the species of extremely halophilic archaea were related to their living natural conditions of brine. Warm weather and high mineralization degree are likely to be functional components to enrich the species diversity.

Keywords: Salt lakes; Halophilic archaea; 16S rDNA; PCR; Phylogenetic tree

Citation: Wen H, Yin X, Gao B, Su S, Xu X (2018) Comparison of Extremely Halophilic Archaea Isolated from Three Salt Lakes in China. Biochem Physiol 7: 227 Doi: 10.4172/2168-9652.1000227

Copyright: ©2018 Wen H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top