ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Case Report   
  • J Earth Sci Clim Change 2013, Vol 4(6): 161
  • DOI: 10.4172/2157-7617.1000161

Climate Change Impacts on the Ou é m é River, Benin, West Africa

Gilles RC Essou and Francois Brissette*
Ecole de Technologie Supérieure (ETS), , 1100 rue Notre-Dame Ouest, Montreal QC, H3C 1K3, Canada
*Corresponding Author : Francois Brissette, Ecole de Technologie Supérieure (ETS), 1100 Rue Notre-Dame Ouest, Montreal QC, H3C 1K3, Canada, Tel: 514-947-1114, Email: francois.brissette@etsmtl.ca

Received Date: Sep 04, 2013 / Accepted Date: Sep 22, 2013 / Published Date: Sep 30, 2013

Abstract

The present study identifies the future impacts of climate change on the flows of the Ouémé River in Bonou, for the 2035-2064 and 2070-2099 periods. For this identification, a set of 65 climate projections from 24 climate models, based on three greenhouse gas emissions scenarios (A2, B1 and A1B) was used. Hydrologic simulations were carried out with a lumped conceptual hydrology model. The results obtained from this study show that daily temperatures in the Ouémé catchment over the reference period (1971-2000) will raise by up to 5°C during the 2070-2099 horizon. For their part, mean daily precipitation projections are much more uncertain. However, what is clear is that mean monthly flows will see a drop potentially as high as 30% during the rainy season, and 20% during the dry season. Similarly, mean seasonal and annual flows will drop by as much as 8 to 10% and 3 to 5%, respectively. This drop will also affect maximum annual flows at a proportion of approximately 3% in the 2035-2064 period and of 5% between 2070 and 2099. This study also showed that we will be seeing changes in extreme flows. These changes will be characterized by a slight drop in quantiles for return periods of less than 10 years, and a potential increase of up to 100 m3/s (an increase of approximately 6%) for quantiles of the return period of 100 years covering the 2070-2099 horizon. These changes have impacts on the economic activities and on the water resource availability in the catchment.

Keywords: Climate change; Hydrology model; Impacts; Flows; Water availability

Citation: Essou GRC, Brissette F (2013) Climate Change Impacts on the Ouémé River, Benin, West Africa. J Earth Sci Clim Change 4: 161. Doi: 10.4172/2157-7617.1000161

Copyright: ©2013 Essou GRC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top