ISSN: 2161-0681

Journal of Clinical & Experimental Pathology
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Case Report   
  • J Clin Exp Pathol 2014, Vol 4(2): 163
  • DOI: 10.4172/2161-0681.1000163

Circadian Rhythm in Stroke: The Influence of Our Internal Cellular Clock on Cerebrovascular Events

Nils Schallner1,2,3, Robert LeBlanc III1, Leo E Otterbein2 and Khalid A Hanafy1,4*
1Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
2Department of Surgery, Beth Israel Deaconess Medical Center, Transplant Institute, USA
3Department of Anesthesiology and Critical Care Medicine, University Medical Center, 79106 Freiburg, Germany
4Division of Neurointensive Care Medicine, Department of Neurology, Beth Israel Deaconess Medical Center, USA
*Corresponding Author : Khalid A Hanafy, Instructor of Neurology, Harvard Medical School, Division of Neurointensive Care Medicine, Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Boston, MA 02215, USA, Tel: 617-735-2836, Fax: 617-735-2826, Email: khanafy@bidmc.harvard.edu

Received Date: Feb 03, 2014 / Accepted Date: Feb 28, 2014 / Published Date: Mar 03, 2014

Abstract

The distinct temporal pattern of stroke occurrence in humans has been recognized for decades; yet, the reason underlying the temporal nature of stroke is not completely understood. Several exogenous factors such as seasonal variation, physical activity, diet and sleep/wake cycles can influence stroke occurrence. Furthermore, it has been increasingly recognized that there are several endogenous physiological functions such as blood pressure, autonomic nervous system activity, and coagulation that show temporal variance and ultimately influence susceptibility to stroke. It was long believed that the neurons within the Suprachiasmatic Nucleus (SCN) controlled all of the body’s circadian rhythm cycles serving as the “master clock”. However, circadian gene expression is inherent to almost every cell in the body, controlling cellular metabolism, and ultimately an organ’s susceptibility to injury. These new insights into the molecular mechanisms regulating circadian rhythmicity might help to explain the phenomenon of circadian variation in stroke occurrence.

Keywords: Circadian rhythm; Circadian rhythm signaling proteins; Ischemic stroke; Intracerebral hemorrhage; Subarachnoid hemorrhage

Citation: Schallner N, LeBlanc R, Otterbein LE, Hanafy KA (2014) Circadian Rhythm in Stroke – The Influence of Our Internal Cellular Clock on Cerebrovascular Events. J Clin Exp Pathol 4:163. Doi: 10.4172/2161-0681.1000163

Copyright: © 2014 Schallner N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top