Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Characterization of Soil Management Groups of Metahara Sugar Estate in Terms of their Physical and Hydraulic Properties

Zeleke Teshome1* and Kibebew Kibret2
1Sugar Corporation, Research and Training, P. O. Box 15, Wonji, Ethiopia
2Haramaya University, P.O.Box 138, Dire Dawa, Ethiopia
Corresponding Author : Zeleke Teshome
Sugar Corporation, Research and Training
P. O. Box 15, Wonji, Ethiopia
Tel: +251911361151
E-mail: zeleketeshome@gmail.com
Received October 16, 2014; Accepted December 19, 2014; Published December 21, 2014
Citation: Teshome Z, Kibret K (2015) Characterization of Soil Management Groups of Metahara Sugar Estate in Terms of their Physical and Hydraulic Properties. Adv Crop Sci Tech 3:159. doi: 10.4172/2329-8863.1000159
Copyright: © 2015 Teshome Z, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

A study was conducted on soil management groups of Metahara Sugar estate in order to characterize them in terms of their physical and hydraulic properties, and develop pedotransfer functions for estimating water contents at field capacity (FC) and permanent wilting point (PWP). Soils of Metahara were classified in to six textural soil management groups (soil classes) on the basis of soil moisture content at pF2 and texture to determine irrigation intervals. These are class 1, 2, 3, 4, 5, and 6 with pF2 moisture contents of <35, 35-45, 45-55, 55-65, 65-75, and >75%, respectively. pF2 is the water content at -10 kPa matric potentials. Ninety eight disturbed and undisturbed samples were taken from surface and subsurface layers. The soil analyses result indicated that mean values of the estate soils varied from class to class and with depth in which bulk density varied from 1.01 to 1.43 g/cm3, particle density from 2.23 to 2.76 g/cm3, total porosity from 40.91 to 61.42%, sand content from 10 to 40%, silt content from 13 to 36%, clay content from 33 to 77%, and organic matter content from 1.18 to 2.69%. The available water holding capacity varied from 99.71 to 212.01 mm/m. The mean saturated hydraulic conductivity varied from 0.96 to 5.95 μm/s while the basic infiltration rate varied from 0.43 to 3.68 cm/hr. The soil water retention characteristic curves (SWRCC) indicate the presence of three distinct groups of soils in the Estate instead of six groups. Water retention at any of the matric potential points considered increased from group 1 (classes 1 and 2) to group 3 (classes 5 and 6). Furthermore, the equation developed using clay content and bulk density as predictor variables was found to be the best equation for predicting gravimetric water content at field capacity and permanent wilting point with reasonable accuracy. Based on the results, the existing irrigation scheduling should be revised for the respective three soil groups.

Keywords

Top