ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Earth Sci Clim Change 2013, Vol 4(3): 141
  • DOI: 10.4172/2157-7617.1000141

Changes in the Terrestrial Carbon Cycle of China during the 2010 Drought

Christopher Potter1*, Shuang Li2, Steven Klooster2 and Vanessa Genovese2
1NASA Ames Research Center, , Moffett Field, CA, USA
2California State University, Monterey Bay, Seaside, CA, USA
*Corresponding Author : Christopher Potter, NASA Ames Research Center, Moffett Field, CA, USA, Email: chris.potter@nasa.gov

Received Date: Apr 30, 2013 / Accepted Date: Jun 13, 2013 / Published Date: Jun 18, 2013

Abstract

Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought throughout China. Results indicated that net primary production (NPP) for 2010 declined most notably in the provinces of Xinjiang, Hebei, and Zhejiang, predominantly in cropland and mixed forest areas. Annual NPP in the most drought-impacted areas of southwestern China declined by an average of 13% compared to the previous 10-year average. The greatest decline in total ecosystem carbon gain during 2010 (compared to 2000 to 2009) was detected in the provinces of Yunnan (-28.1 Tg C), Tibet (-18.8 Tg C), and Guizhou, (-6.3 Tg C) predominantly in cropland, grassland, and mixed forest areas. Despite these drought impacts over the southwest and northern regions, the CASA model estimated that China gained total ecosystem carbon in 2010 at double the mean annual rate (computed for the period 2000 to 2009). Cropland and forest areas of Heilongjiang and Inner Mongolia remained productive in 2010 and these regions were estimated, along with several other provinces, to offset and exceed declines in plant production and total ecosystem carbon losses in the most drought-impacted areas of Tibet, Guizhou, Yunnan, Xinjiang, and Zhejiang provinces.

Keywords: China; Drought; carbon cycle; MODIS

Citation: Potter C, Li S, Klooster S, Genovese V (2013) Changes in the Terrestrial Carbon Cycle of China during the 2010 Drought. J Earth Sci Clim Change 4: 141. Doi: 10.4172/2157-7617.1000141

Copyright: ©2013 Potter C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top