Cell Wall Hydrolase Producing Microbial Consortium Modulates Soil Carbon Dynamics with its Ensuing Effect on Productivity of Wheat under Straw Incorporated Conditions
Received Date: May 19, 2023 / Published Date: Jun 30, 2023
Abstract
Abundance and improper disposal of agricultural residues often leads to loss of biomass resources and environmental health. Straw is the major residue of rice-wheat cropping system and a potential source of soil and plant nutrients. However, natural decomposition of rice straw is slow owing to its structural composition lignocellulose and silica), therefore, often left unutilized regardless of different management practices. To subdue this problem an elite alternative would be to manage rice straw in the field itself. So, the present work emphasizes on microbial bioconversion of rice straw into soluble nutrients through the action of cell wall hydrolases. Henceforth, selection and characterization of efficient cellulase and laccase producing microbes; and consortia development using compatible microbes was targeted for speeding the decomposition process under straw incorporated field conditions. The selected microbial consortium Cons16; comprising Phanerochaete chrysosporium, Trichoderma harzianum, Trichoderma asperellum and Bacillus sp.) was subjected for evaluation of its decomposition efficacy and the concomitant effects on soil health and carbon dynamics along with the growth of subsequent wheat crop. Soil carbon dynamics studied in terms of total carbon; methane and carbon dioxide emission depict carbon sequestration in treatment with Cons 16. Our inimitable findings showed that apart from distinct improvement in soil physicochemical and biological properties increased yield of wheat was observed.
Citation: Srivastava S, Bist V, Maurya D, Narayan S, Srivastava S, et al. (2023) Cell Wall Hydrolase Producing Microbial Consortium Modulates Soil Carbon Dynamics with its Ensuing Effect on Productivity of Wheat under Straw Incorporated Conditions. Adv Crop Sci Tech 11: 587.
Copyright: © 2023 Srivastava S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Usage
- Total views: 1275
- [From(publication date): 0-2023 - Dec 03, 2024]
- Breakdown by view type
- HTML page views: 1148
- PDF downloads: 127