Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation
Received Date: Nov 08, 2018 / Accepted Date: Mar 26, 2019 / Published Date: Apr 02, 2019
Abstract
This study measures the carbon stock of the Moist Afromontane Gesha-Sayilem forest found in Gesha and Sayilem District in southwest Ethiopia. A stratified sampling method was used to identify the number of sampling point through the Global Positioning System. A total of 90 plots having nested plots to collect tree species and soil data were demarcated. The allometric and Walkley-Black method was used to estimate biomass and soil carbon stock, respectively. The carbon stock of trees was estimated using an allometric equation developed by Chave’s model. The results revealed that the total carbon stock of the forest was 362.4 ton per hectare (t/ha) whereas the above ground carbon stock was 174.95 t/ha, below ground litter, herbs, soil, and dead woods were 34.3, 1.27, 0.68, 128 and 23.2 t/ha (up to 30 cm depth) respectively. The carbon pools’ carbon stock variation with altitude and slope gradients were not significant (p>0.05) indicating the altitudinal influence was small due to similar topographic features. The Gesha-Sayilem Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. Thus conservation of the forest through introduction REDD+ activities is considered an appropriate action for mitigating climate change.
Keywords: Carbon sequestration; Carbon stock; Climate change; Allometric
Citation: Addi A, Demissew S, Soromessa T, Asfaw Z (2019) Carbon Stock of the Moist Afromontane Forest in Gesha and Sayilem Districts in Kaffa Zone: An Implication for Climate Change Mitigation. J Ecosys Ecograph 9: 261.
Copyright: © 2019 Addi A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Usage
- Total views: 3683
- [From(publication date): 0-2019 - Nov 20, 2024]
- Breakdown by view type
- HTML page views: 2835
- PDF downloads: 848