Research Article
Carbon Stock Analysis along Forest Disturbance Gradient in Gedo Forest: Implications of Managing Forest for Climate Change Mitigation
Hamere Yohannes1*, Teshome Soromessa2 and Mekuria Argaw2
1Department of Natural Resource Management, College of Agriculture and Natural Resource Science, Debre Berhan University, Post Box No: 445, Debre Berhan, Ethiopia
2Center for Environmental Science, College of Natural Science, Addis Ababa University, Post Box No: 1176, Addis Ababa, Ethiopia
- *Corresponding Author:
- Hamere Yohannes
Department of Natural Resource Management
College of Agriculture and Natural Resource Science
Debre Berhan University, Post Box No: 445
Debre Berhan, Ethiopia
Tel: +251116815440
E-mail: hamerey@gmail.com
Received Date: August 31, 2015 Accepted Date: September 14, 2015 Published Date: September 20, 2015
Citation: Yohannes H, Soromessa T, Argaw M (2015) Carbon Stock Analysis along Forest Disturbance Gradient in Gedo Forest: Implications of Managing Forest for Climate Change Mitigation. J Ecosys Ecograph 5:170. doi:10.4172/2157-7625.1000170
Copyright: © 2015 Yohannes H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Forests are known to play an important role in regulating the global climate. Ethiopia has a substantial forest resource; however, these forests are facing a rapid rate of deforestation and degradation. This in turn adversely affects forest carbon stock under studied in Ethiopia. This study explores the variation of carbon stock due to a forest disturbance gradient in Gedo forest. Data were collected from 200 m2 plot along transect in a systematically stratified forest part. Spatial distribution of the carbon stock varied within forest disturbance gradient. More aboveground biomass (356.11 ± 37.83 ton/ha), belowground biomass (71.22 ± 7.56 ton/ha) and total carbon (615.16 ± 47.58 ton/ha) were found in the least disturbed stand and the lower total carbon (410.32 ± 52.22 ton/ha) was found in the highly disturbed stand. Dead wood biomass carbon pool was found in least and semi-disturbed stand. Forest disturbance had a significant effect on aboveground biomass, belowground biomass carbon, total carbon density and dead wood biomass carbon. Forest disturbance had an inverse moderate significant correlation with the first three pools and an inverse weak correlation with the later pool. Carbon sequestration in a forest ecosystem was determined by level of human-induced disturbances.