ISSN: 2375-4338

Rice Research: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Perspective   
  • J Rice Res 2022 10:6 ,
  • DOI: 10.4172/2375-4338.1000306

Blast resistance in Indian rice: Genetic dissection by gene markers

Mohammad Zahidul Islam*
Department of Stress Physiology, Scientist Centre for Water Resources Development and Management (CWRDM), Kerala, India
*Corresponding Author : Mohammad Zahidul Islam, Bangladesh Rice Research Institute (BRRI), Regional Station, Goplalganj, Bangladesh, Email: zahid.grs@gmail.com

Received Date: Jun 02, 2022 / Published Date: Jun 30, 2022

Abstract

Understanding of genetic diversity is important to explore existing gene in any crop breeding program. Most of the diversity preserved in the landraces which are well–known reservoirs of important traits for biotic and abiotic stresses. In the present study, the genetic diversity at twenty-four most significant blast resistance gene loci using twenty-eight gene specific markers were investigated in landraces originated from nine diverse rice ecologies of India. Based on phenotypic evaluation, landraces were classified into three distinct groups: highly resistant (21), moderately resistant (70) and susceptible (70). The landraces harbour a range of five to nineteen genes representing blast resistance allele with the frequency varied from 4.96% to 100%. The cluster analysis grouped entire 161 landraces into two major groups. Population structure along with other parameters was also analyzed to understand the evolution of blast resistance gene in rice. The population structure analysis and principal coordinate analysis classified the landraces into two sub– populations. Analysis of molecular variance showed maximum (93%) diversity within the population and least (7%) between populations. Five markers viz; K3957, Pikh, Pi2–i, RM212and RM302 were strongly associated with blast disease with the phenotypic variance of 1.4% to 7.6%. These resistant landraces will serve as a valuable genetic resource for future genomic studies, host–pathogen interaction, identification of novel R genes and rice improvement strategies.

Citation: Chaturvedi AK (2022) Blast Resistance in Indian Rice: Genetic Dissection by Gene Markers. J Rice Res 10: 306. Doi: 10.4172/2375-4338.1000306

Copyright: © 2022 Chaturvedi AK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top