Bioremediation of Waste water: In-depth Review on Current Practices and Promising Perspectives
Received Date: Feb 07, 2022 / Published Date: Feb 28, 2022
Abstract
World water resources are available in oceans and seas 97.5%, fresh water resources available is limited to 2.5% which is further contaminated by large range of pollutants such as the effluents from pharmaceutical industries, textile industries, food and dairy industries, mining industries agricultural waste, heavy metals, petroleum hydrocarbons, sewage waste etc. Textile, agricultural and pharmaceutical wastewater contain high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. Heavy metals like uranium, mercury, lead, chromium, copper, iron etc. can cause a major environmental problem due to their toxicity and persistence in nature. To combat, bioremediation is an option that offers the possibility to destroy or render harmless various contaminants using natural biological activity. Further, nanoremediation-nanotechnology that depends on the use of nanomaterials to tackle and address the formidable challenges of 21st century as water pollution crisis. In-silico approach is a computational framework, potential to perform virtual screening of pollutants and helps to fulfill the gaps and address the flaws of convention bioremediation. In this review paper is an attempt to compile the existing information on various treatment technologies viz. Bioremediation, Nanoremediation. Nanotechnology and In-silico approaches for treatment of waste water.
Citation: Kaushal RS, Shukla H, Gautam S, Bapodariya H, Maliwad MB, et al. (2022) Bioremediation of Waste water: In-depth Review on Current Practices and Promising Perspectives. J Bioremediat Biodegrad, 13: 493. Doi: 10.4172/ 2155-6199.1000493
Copyright: © 2022 Kaushal RS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 5848
- [From(publication date): 0-2022 - Dec 22, 2024]
- Breakdown by view type
- HTML page views: 5314
- PDF downloads: 534