Research Article
Bioremediation of Chromium from Fortified Solutions by Phanerochaete Chrysosporium (MTCC 787)
Sumit Pal* and Vimala Y | |
Department of Microbiology, GITAM institute of science, GITAM University, Visakhapatnam, Andhra Pradesh, India | |
Corresponding Author : | Sumit Pal Research scholar, Department of Microbiology GITAM Institute of Science, GITAM University Visakhapatnam, Andhra Pradesh, India E-mail: sumitmicrobe@gmail.com |
Received August 26, 2011; Accepted September 27, 2011; Published October 15, 2011 | |
Citation: Pal S, Vimala Y (2011) Bioremediation of Chromium from Fortified Solutions by Phanerochaete Chrysosporium (MTCC 787). J Bioremed Biodegrad 2:127. doi:10.4172/2155-6199.1000127 | |
Copyright: © 2011 Pal S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
Related article at Pubmed Scholar Google |
Abstract
Pollution by chromium is of major concern as the metal is used in electroplating, metal finishing leather tanning and chromate preparation. Chromium found in water bodies and in soil is in the form of Cr (III) and Cr (VI). Cr (VI) being of particular concern because of its greater toxicity. At present various microorganisms are used for bioremediation of heavy metals from soil and water bodies. The aim of present work was to bioremediate chromium from fortified solution by a white rot fungus Phanerochaete chrysosporium (MTCC787). The potency of Phanerochaete chrysosporium was evaluated to remediate chromium from fortified solution by viable cells, microbial biosorbents and immobilized cells for the first time. The percentage removal of chromium was analyzed by UV-Visible spectrophotometer (HitachiU-2900). The study shows 99.7% Cr (VI) was removed by biosorption with Phanerochaete chrysosporium detected spectrophotometrically after 72 hrs. This study shows that Phanerochaete chrysosporium is highly potential to be used for the removal of chromium which is also a viable, eco friendly and cost effective technology for cleanup of chromium (VI).