ISSN: 2155-6199

Journal of Bioremediation & Biodegradation
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Biodegradation of Hexachlorocyclohexane (HCH) Isomers by White Rot Fungus, Pleurotus florida

Soudamini Mohapatra1* and Meera Pandey2
1Pesticide Residue Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake, India
2Mushroom Culture Laboratory, Indian Institute of Horticultural Research, Hessaraghatta Lake, India
Corresponding Author : Soudamini Mohapatra
Pesticide Residue Laboratory
Indian Institute of Horticultural Research
Hessaraghatta Lake, Bangalore 560089,India
Tel/Fax: 91 80 28446649
E-mail: Soudamini_mohapatra@rediffmail.com
Received December 23, 2014; Accepted February 24, 2015; Published February 27, 2015
Citation: Mohapatra S, Pandey M (2015) Biodegradation of Hexachlorocyclohexane (HCH) Isomers by White Rot Fungus, Pleurotus florida. J Bioremed Biodeg 6:280. doi:10.4172/2155-6199.1000280
Copyright: © 2015 Mohapatra S, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Hexachlorocyclohexane (HCH) isomers are reported to persist in the environment long after their usage is discontinued. Pleurotus florida, a white rot fungus, was found to degrade not only γ-HCH but also its more persistent isomers individually as well as a mixture in a Raper’s complete medium. Within 30 days γ-HCH degraded completely, whereas other 3 isomers degraded 92-99%. The degradation rate was γ-HCH>β-HCH>α- and δ-HCH. The mycelium biomass was free from γ-HCH residues but accumulated about 3% residues of other 3 isomers. Presence of intermediate metabolites was not detected indicating complete mineralization of HCH isomers. Ability of P. florida to degrade HCH isomers was further studied in soil by amendment with spent mushroom substrate (SMS). SMS addition could marginally increase degradation of α-, β- and δ-HCH, but significantly increased degradation of γ-HCH. When the study was repeated similar trend was observed. The half-life of degradation of γ-HCH was 439-570 days in un-amended soil while 37-42 days in SMS amended soil. For other 3 stable isomers the half-life was reduced from 686-828 to 88-125 days by SMS amendments. These results indicate that SMS from P. florida cultivation can be utilized for bioremediation of HCH contaminated site.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top