Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Biodegradation of Engine Oil by Agaricus campestris (A White Rot Fungus)

Adongbede EM* and Sanni RO
Department of Botany, University of Lagos, Nigeria
Corresponding Author : Adongbede EM
Department of Botany
University of Lagos,Nigeria
Tel: +2348033990469
E-mail: erute70@yahoo.com, eadongbede@unilag.edu.ng, e.adongbede@gmail.com
Received July 13, 2014; Accepted November 26, 2014; Published November 28, 2014
Citation: Adongbede EM, Sanni RO (2014) Biodegradation of Engine Oil by Agaricus campestris (A White Rot Fungus). J Bioremed Biodeg 5:262. doi:10.4172/2155-6199.1000262
Copyright: © 2014 Adongbede EM, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

The white rot fungus Agaricus campestris collected from the wild in Lagos State Nigeria was cultured in minimal salt medium (MSM) contaminated with engine oil with the aim of investigating its degradative potential. The Indiscriminate disposal of spent engine oil by motor mechanics and other workers in Nigeria necessitated this research. The mushroom was grown in minimal salt medium for 30 days with the engine oil as its sole carbon source. The optical densities at 530 and 620 nm of engine oil contaminated MSM seeded with A. campestris and engine oil contaminated MSM not seeded with the mushroom was recorded for 30 days. There was significant difference between the optical densities of the two treatments with the contaminated MSM seeded (with A. campestris) been higher (p<0.05) at day 25. Total residual petroleum hydrocarbons were extracted at the end of 30 days with n-hexane and analyzed with gas chromatography attached to a flame ionizer detector (GC-FID). Agaricus campestris significantly reduced the total petroleum hydrocarbons from 2744.72 mg/l in control to 503.08 mg/l in the contaminated minimal salt solution (p<0.05) (i.e. over 90% of petroleum hydrocarbons were degraded). There was formation of secondary metabolites shown by repeats of some carbon atoms not found in the control. The fungus was able to mineralize long chain carbon compounds within the C24-C28 range as some of them disappeared from the seeded contaminated MSM. This research work concludes that Agaricus campestris has potential for mycoremediation of engine oil contaminated sites. There is need for more research to be done to establish the growth of the fungus in soils contaminated with engine oil.

Keywords

Google Scholar citation report
Citations : 7718

Journal of Bioremediation & Biodegradation received 7718 citations as per Google Scholar report

Journal of Bioremediation & Biodegradation peer review process verified at publons
Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Ulrich's Periodicals Directory
  • Access to Global Online Research in Agriculture (AGORA)
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Publons
  • Geneva Foundation for Medical Education and Research
  • MIAR
  • ICMJE
Share This Page
Top