Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Biochemical Sulfuryl Group Transfer From 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) Versus Phosphoryl Transfer From ATP: What Can Be Learnt?

KV Venkatachalam*
Department of Biochemistry, College of Medical Sciences, Nova Southeastern University, Ft. Lauderdale, FL-33328, USA
Corresponding Author : KV Venkatachalam
Department of Biochemistry, College of Medical Sciences
Nova Southeastern University, Ft. Lauderdale, FL-33328, United States
Tel: (954)262-1870
E-mail: venk@nova.edu
Received: November 18, 2015; Accepted: December 21, 2015; Published: January 07, 2016
Citation: Venkatachalam KV (2016) Biochemical Sulfuryl Group Transfer From 3’-Phosphoadenosine 5’-Phosphosulfate (PAPS) Versus Phosphoryl Transfer From ATP: What Can Be Learnt? Biochem Physiol 5:192. doi:10.4172/2168- 9652.1000192
Copyright: © 2016 Venkatachalam KV. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Phosphotransferases (kinases) use ATP as the universal phosphoryl donor whereas sulfotransferases use PAPS as the universal sulfuryl donor. Once phosphoryl group is transferred to a recipient molecule, it receives total of two negative charges changing its physicochemical properties. Similarly, upon sulfuryl transfer the recipient molecule receives one negative charge from the sulfonate group. Aside from this difference are there any other advantages of choosing an additional element in the biological systems? It appears that the phosphoryl transfer reactions take place during cell cycle/signaling and in primary metabolism. Whereas, sulfuryl transfer reaction happens mainly to the secondary metabolites/protein transformations? In this paper, I have compared the overall biochemical aspects of phosphate/ sulfate metabolic activation and the variety of phosphate/sulfate based cofactors. ATP, CoA, PAPS, NADP+, NAD+, FAD+ and SAM, all share the presence of adenosyl moiety. ATP, SAM and FAD+ contain only 5’ phosphate. CoA and PAPS in addition to 5’ phosphate have 3’ phosphate. CoA has the terminal pantotheine sulfur in the reduced thiol form whereas PAPS contain sulfate (the most oxidized form of sulfur). SAM has sulfur in cationic form that is attached to adenosyl group. NADP+ has 2’ phosphate in addition to the unique 5’-5’ linked phosphates. Thus, the nucleotide cofactor varieties from sulfur and phosphates are intriguing and add interesting evolutionary combinations to the biological systems.

Google Scholar citation report
Citations : 1579

Biochemistry & Physiology: Open Access received 1579 citations as per Google Scholar report

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Euro Pub
  • ICMJE
Share This Page
Top