ISSN: 2161-119X

Otolaryngology: Open Access
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • Otolaryngol (Sunnyvale) 2016, Vol 6(3): 238
  • DOI: 10.4172/2161-119X.1000238

Auditory Cortical Temporal Processing Abilities in Young Adults

Aseel Almeqbel1* and Catherine McMahon2
1Department of Hearing and Speech Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait
2Linguistics Department, Faculty of Human Sciences, Macquarie University, The HEARing Cooperative Research Centre (CRC), Sydney, Australia
*Corresponding Author : Aseel Almeqbel, Department of Hearing and Speech Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, P.O. Box 31470, 90805, Sulaibikat, Kuwait, Tel: 000096599996031, Email: aseel.m@hsc.edu.kw

Received Date: Apr 26, 2016 / Accepted Date: Jun 08, 2016 / Published Date: Jun 15, 2016

Abstract

Purpose: To evaluate whether cortical encoding of temporal processing ability, using the N1 peak of the cortical auditory evoked potential, could be measured in normally hearing young adults using three paradigms: voice-onsettime, speech-in-noise and amplitude-modulated broadband noise. Research design: Cortical auditory evoked potentials (CAEPs) were elicited using: (1) naturally produced stop consonant-vowel (CV) syllables /da/-/ta/ and /ba/-/pa/; (2) speech-in-noise stimuli using the speech sound /da/ with varying signal-to-noise ratios (SNRs); and (3) 16 Hz amplitude-modulated (AM) BBN presented in two conditions: (i) alone (representing a temporally modulated stimulus) and (ii) following an unmodulated BBN (representing a temporal change in the stimulus) using four modulation depths; (4) Behavioural tests of ï»¿temporal modulation ï»¿ transfer function (TMTF) and speech perception using CNC word list were carried out. All stimuli were presented at 65 Db SPL in the sound field. Study sample: Participants were adults (12 Females and 8 Males) aged 1830 years with normal hearing. Results: Results showed: (1) a significant means difference in N1 latency (p<0.05) between /da/ vs. /ta/ and /ba/ vs. /pa/; (2) significant N1 latency prolongation with decreasing signal-to-noise ratios for the speech sound /da/; and (3) the N1 latency did not significantly change for different modulations depths when measured for the AMBBN alone or when following a BBN. Conclusion: Changes in the N1 latency provide a measure of temporal changes in a stimulus for VOT and speech-in-noise. N1 latency could be used as an objective measure of temporal processing ability in individuals with temporal processing disorder who are difficult to assess by behavioural response.

Citation: Almeqbel A, McMahon C (2016) Auditory Cortical Temporal Processing Abilities in Young Adults. Otolaryngol (Sunnyvale) 6:238. Doi: 10.4172/2161-119X.1000238

Copyright: © 2016 Almeqbe A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Review summary

  1. Brodie
    Posted on Oct 28 2016 at 5:47 pm
    Presented article talks about the development and evaluation of three electrophysiological measures of temporal processing in normally hearing adults with normal temporal processing abilities measured using TMTF. In general, this presented article is informative and provides useful and comprehensive information.
Top