Research Article
Assessing Long Term Effects of Bioremediation: Soil Bacterial Communities 14 Years after Polycyclic Aromatic Hydrocarbon Contamination and Introduction of a Genetically Engineered Microorganism
Xiaoci Ji1, Steven A Ripp2, Alice C Layton2, Gary S Sayler2,3, Jennifer M DeBruyn1* | |
1Department of Biosystems Engineering and Soil Science, The University of Tennessee, USA | |
2Center for Environmental Biotechnology, The University of Tennessee, USA | |
3Department of Microbiology, The University of Tennessee, USA | |
Corresponding Author : | Jennifer M DeBruyn Department of Biosystems Engineering and Soil Science The University of Tennessee, USA Tel: 865-974-7266 E-mail: jdebruyn@utk.edu |
Received September 05, 2013; Accepted October 04, 2013; Published October 10, 2013 | |
Citation: Ji X, Ripp SA, Layton AC, Sayler GS, DeBruyn JM (2013) Assessing Long Term Effects of Bioremediation: Soil Bacterial Communities 14 Years after Polycyclic Aromatic Hydrocarbon Contamination and Introduction of a Genetically Engineered Microorganism. J Bioremed Biodeg 4:209. doi: 10.4172/2155-6199.1000148 | |
Copyright: © 2013 Ji X, et al. This is an open-a ccess article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | |
Related article at Pubmed Scholar Google |
Abstract
Environmental contamination by organics such as polycyclic aromatic hydrocarbons (PAHs) generally changes native microbial communities. However our understanding of microbial responses has been limited to short term studies (i.e., less than 2-3 years) so long term community responses are not as well understood. In 1996, the genetically engineered microorganism Pseudomonas fluorescens HK44 was released into polycyclic aromatic hydrocarbon (PAH)-contaminated soil in lysimeters to monitor in situ PAH-biodegradation.
The objective of this study was to assess the long term impacts of PAH contamination and addition of HK44 on the indigenous soil bacterial community structure. In 2010, 14 years after the lysimeter experiment initiation, lysimeters were unsealed and sampled. Although PAHs were degraded and PAH concentrations fell below detectable levels within approximately the first two years of this experiment, lysimeters that had received PAHs had significantly higher soil organic matter content (1.30 ± 0.23%) than control lysimeters with clean soils (0.81 ± 0.08%). Pyrosequencing of 16S rRNA gene amplicon libraries revealed a distinct bacterial community structure in the lysimeters that had received PAHs. In contrast, there were no discernible differences in soil chemistry or bacterial community structures in lysimeters where HK44 was inoculated compared to those to which HK44 was not inoculated. These results indicate that although the initial perturbations are no longer detectable, the addition of PAHs had long term influences on the bacterial communities, while the introduction of the genetically engineered microorganism HK44 did not.