Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Artificial Neural Network Modeling of Ball Mill Grinding Process

Veerendra Singh1*, P K Banerjee1, S K Tripathy1, V K Saxena2 and R Venugopal2

1Research and Development, Tata Steel, Jamshedpur-831001, India

2Indian School of Mines, Dhanbad, Jharkhand-826004, India

*Corresponding Author:
Veerendra Singh
Research and Development, Tata Steel
Jamshedpur-831001, India
E-mail: veerendra.singh@tatasteel.com

Received Date: December 27, 2012; Accepted Date: February 15, 2013; Published Date: February 21, 2013

Citation: Veerendra Singh, Banerjee PK, Tripathy SK, Saxena VK, Venugopal R (2013) Artificial Neural Network Modeling of Ball Mill Grinding Process. J Powder Metall Min 2:106. doi: 10.4172/2168-9806.1000106

Copyright: © 2013 Veerendra Singh, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Grinding consumes around 2% of the energy produced in the world but existing methods of milling are very inefficient and use only 5% of the input energy for real size reduction rest is consumed by machine itself. Chrome ores are comminute, filtered, pelletized and sintered to use into submerged arc furnace for ferrochrome production. Variation in ore properties affects the particle size distribution during milling. Artificial neural network based model is developed to predict the particle size distribution of ball mill product using grinding data available for difference in grindability of Sukinda chromite ores. Input variables for model were ball size, ball load, ball-ore ratio, grinding time. Output was particle size distribution (+75 μm, -75 μm, +38 μm; -38 μm). Three different kinds of mathematical models have been compared to predict the particle size distribution. Finally a neural network based model was found most accurate. Dynamic artificial neural network model does not require any material constant and optimizes the mathematical correlation with better accuracy in a dynamic process. This methodology can be used to develop an online system to predict the ball mill performance to improve the performance of grinding circuit in mineral, metal and cement industry.

Keywords

Top