Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India
Received Date: Apr 21, 2015 / Accepted Date: Apr 28, 2015 / Published Date: May 08, 2015
Abstract
In this paper, the most stable and efficient neural network configuration for predicting groundwater level in Amritsar and Gurdaspur districts of Punjab, India is identified. For predicting the model efficiency and accuracy, different types of network architectures and training algorithms are investigated and compared. It has been found that accurate predictions can be achieved with a standard feed forward neural network trained with the Levenberg–Marquardt algorithm providing the best results. Good estimation of groundwater level can be achieved by dividing the boreholes/observation wells into different groups of data and designing distinct networks which is validated by the ANN technique and the degree of accuracy of the ANN model in groundwater level forecasting is within acceptable limits. The ANN method has been found to forecast groundwater level in Amritsar and Gurdaspur districts of Punjab, India.
Keywords: Artificial neural networks; Groundwater level forecasting; Amritsar; Gurdaspur; Punjab; Aquifer exploitation
Citation: Lohani AK, Krishan G (2015) Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India. J Earth Sci Clim Change 6: 274. Doi: 10.4172/2157-7617.1000274
Copyright: ©2015 Lohani AK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Share This Article
Recommended Journals
Open Access Journals
Article Tools
Article Usage
- Total views: 16019
- [From(publication date): 6-2015 - Dec 22, 2024]
- Breakdown by view type
- HTML page views: 11366
- PDF downloads: 4653