Editorial
APE1: A Molecule of Focus with Neuroprotective and Anti-Cancer Properties
Anil K Mantha1,2*1Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India, Pin Code: 151 001
2Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA (Adjunct Assistant Professor)
- Corresponding Author:
- Dr. Anil K. Mantha
Assistant Professor
Center for Biosciences
School of Basic and Applied Sciences
Central University of Punjab
Bathinda, 151 001, Punjab, India
E-mail: anilmantha@gmail.com; Anil.kumar@cup.ac.in
Received date: June 25, 2013; Accepted date: June 26, 2013; Published date: June 28, 2013
Citation: Mantha AK (2013) APE1: A Molecule of Focus with Neuroprotective and Anti-Cancer Properties. J Biotechnol Biomater 3:e120. doi:10.4172/2155-952X.1000e120
Copyright: © 2013 Mantha AK. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
Apurinic/Apyrimidinic endonuclease (APE1) is a multi-functional, central enzyme of base excision repair (BER) pathway that takes care of oxidized base damage (AP sites and strand breaks) caused by both endogenous and exogenous oxidative DNA damaging agents. In repair function, APE1 exhibits majorly abasic (AP) endonuclease activity and stable interaction(s) with BER-pathway participant proteins. Second function of APE1 is redox activation of various transcription factors (TFs e.g., c-jun, NF-kB, p53 and HIF1α) and also named as redox effector factor 1(Ref-1). In redox function, APE1 reductively activates TFs involved in regulation of gene expression for cell survival mechanisms through stable pair-wise interaction(s). Recent studies have indicated that APE1 also possesses other distinct functions such as RNA metabolism, riboendonuclease activity and protein-protein interaction for maintaining cellular homeostasis. Altered APE1 expression has been reported in various cancers and neurodegenerative diseases. Taken together such findings advocates the necessity to delineate the underlying molecular mechanism(s) for understanding its role in various biological functions, that could be translated to its application in therapeutics against human diseases like cancer, neurodegenerative diseases and other pathologies such as cardiovascular diseases.