Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Antibacterial ability of NiTi alloys by depositing Ag/collagen coatings

*Corresponding Author:

Copyright: © 2020  . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 
To read the full article Peer-reviewed Article PDF image

Abstract

NiTi alloys are one of the most important shape memory alloys because of their superior shape memory effect and peseudoelasticity compared to other shape memory alloys. NiTi alloys have been used in orthopaedic device applications, such as osteotomy fixation staples and intramedullary implants owing to their unique shape memory effect, superelasticity, low elastic modulus, and good resistance to fatigue. However, they suffer some drawbacks. The NiTi alloys lack antibacterial properties, and some patients are allergic to components with Ni. This study fabricated a Ag/collagen coating on a porous oxide film on NiTi alloy to improve the antibacterial ability of NiTi implants. Plasma electrolytic oxidation was first applied on NiTi to form a porous surface, which was then coated with silver through electrochemical deposition (ECP). Collagen was then used to modulate the amounts and shapes of the Ag during ECP. It was found that Ag aggregations with coarse dendritic structures were non-uniformly distributed on the surface. The distrubution of Ag aggregations was improved by deposition of collagen and Ag in the same time. The addition of collagen enables the silver aggregation to change to a sphere-like shape. Furthermore, the assistance of collagen also reduces the size of Ag aggregation. Cross-sectional TEM indicated that many Ag clusters are aggregated with each other and fill part of the pores on the oxide surface and inside the oxide film. The deposition of Ag on the oxide film causes the contact angle to increase, which suggests that the Ag-covered surface is hydrophobic. The Ag/collagen coating improves the hydrophilicity of the porous oxide film on NiTi alloy. The Ag/collagen coating can effectively prevent adhesion adn proliferation of Escherichia coli. The oxide film can protect the substrate from bacteria adhesion but cannot kill the bacterial in the suspension.

Keywords

Google Scholar citation report
Citations : 3330

Journal of Biotechnology & Biomaterials received 3330 citations as per Google Scholar report

Indexed In
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • China National Knowledge Infrastructure (CNKI)
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • ICMJE
Recommended Journals
Share This Page
Top