ISSN: 2157-7617

Journal of Earth Science & Climatic Change
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Research Article   
  • J Earth Sci Clim Change,
  • DOI: 10.4172/2157-7617.1000423

Analysis of the Relationship between Urban Heat Island and Land Cover in Istanbul through Landsat 8 OLI

Soolmaz Zaeemdar* and Tüzin Baycan
Department of Urban and Regional Planning, Istanbul Technical University, Turkey
*Corresponding Author : Soolmaz Zaeemdar, Department of Urban and Regional Planning, Istanbul Technical University, Turkey, Tel: 902122853030, Email: soolmazzaeemdar@gmail.com

Received Date: Sep 25, 2017 / Accepted Date: Nov 04, 2017 / Published Date: Nov 08, 2017

Abstract

The Urban Heat Island (UHI) effect, the characteristic warmth of a settlement compared with its surroundings, is the best-known climatic response to disruptions caused by urban development. Istanbul has experienced a highspeed urban growth in the last century. While the population of the city was under one million in 1900, it reached to 14 million in 2015. Almost 14 times growth in one century has made Istanbul the largest city in Turkey. High-speed urbanization and transformation of the natural environment and forests into built-up area has a critical impact on the metropolitan’s climate. Due to the alteration of heat energy balance and as a megacity, Istanbul has been affected by increasing severe heat waves in summer. This study focuses on two of the effective urban design factors upon the urban heat islands (UHIs) in Istanbul such as vegetation cover and characteristic of surface materials. The spatial pattern of land surface temperature (LST), surface albedo, the normalized difference vegetation index (NDVI) and land cover-land use (LCLU) are analyzed to explore the cooling or heating impacts of the green areas and the build-up areas on the UHI. The methodology is based on using Landsat 8 OLI (Operational Land Imager) satellite image that captured on 6 September 2015, and available meteorological data include two stations, one in city center (Kandilli Station) and the other one in rural area (Sile Station) that revealed average annual temperature differences 8.3°C in the last decade. The results of the analysis show that artificial surfaces with low albedo and low vegetation cover have the most positive exponential relationship with land surface temperature (LST) and increasing effect on UHI formation. The results of the analysis highlight that high albedo material (HAM), greenery on the surface and on the roofs (VEG), and a combination of them can be used as the UHI mitigation strategies.

Keywords: Urban Heat Island (UHI); Albedo; Land Surface Temperature; Land Use and Land Cover; Mitigation

Citation: Zaeemdar S, Baycan T (2017) Analysis of the Relationship between Urban Heat Island and Land Cover in Istanbul through Landsat 8 OLI. J Earth Sci Clim Change 8: 423. Doi: 10.4172/2157-7617.1000423

Copyright: © 2017 Zaeemdar S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top