Special Issue Article
Analysis of Maize Photosyntheis Parameters and Whole Plant Oxidative Damage Under Long-term Drought
Alyne Oliveira Lavinsky*, Paulo César Magalhães, Roniel Ávila, Carlos César Gomes-Jr and Newton Portilho Carneiro | ||
Embrapa Milho e Sorgo, Rodovia MG-424, Km 45 Caixa Postal: 285 ou 151 CEP: 35701-970, Sete Lagoas, MG, Brazil | ||
Corresponding Author : | Alyne Oliveira Lavinsky Embrapa Milho e Sorgo Rodovia MG-424, Km 45 Caixa Postal: 285 ou 151 CEP: 35701-970 Sete Lagoas, MG, Brazil Tel: 3027-1100 E-mail: alynelavinsky@gmail.com |
|
Received April 12, 2015; Accepted May 20, 2015; Published May 22, 2015 | ||
Citation: Lavinsky AO, Magalhães PC, Ávila R, Gomes-Jr CC, Carneiro NP (2015) Analysis of Maize Photosyntheis Parameters and Whole Plant Oxidative Damage Under Long-term Drought. Adv Crop Sci Tech S1:007. doi: 10.4172/2329-8863.1000S1-007 | ||
Copyright: © 2015 Lavinsky AO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | ||
Related article at Pubmed Scholar Google |
Abstract
We test if maize maintain yield under long-term drought throught improvement of photosyntheis (A) coupled with up-regulation of the antioxidant system induced by increase in levels of abscisic acid (ABA). Four maize genotypes with constrasting drought tolerance: BRS1010 and 2B710 (sensitive) and DKB 390 and BRS1055 (tolerant) in two soil water levels, field capacity (FC) and water deficit (WD) were used. WD was applied at the pre-flowering stage for 12 days, and oxidative damage was measured as malondialdehyde (MDA) accumulation in whole plant. Plants from tolerant genotypes DKB390 and BRS1055 showed higher A and had no signal of oxidative damage compared to sensitive genotypes 2B710 and BRS1010 under WD, resulting in a higher yield attributes. For our surprising, it was dissociated from up-regulation of the antioxidant system ABA-mediated. In turn, plants from two sensitive genotypes under WD showed compared to FC consistent reduction of A due to mesophyll conductance (gm) limitation. Only WD plants from sensitive genotype BRS1010 presented leaf ABA levels increased related to its counterparts under FC; however, due to the inactivation of catalase activity the oxidative damage control was not effective, resulting a hardly MDA acumulation in both leaves and roots. The maize tolerance under long-term drought is linked to scape of gm decline.