Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Adenosine’s Autacoid Function in the Central Nervous System and the Behavioral State of Conservation-Withdrawal

Brandy A. Briones1, Traci N. Plumb2 and Thomas R. Minor2,3,4*
1Department of Psychology, Princeton University,
2Department of Psychology, University of California, Los Angeles
3Brain Research Institute, UCLA
4Integrative Center for Learning and Memory, UCLA
Corresponding Author : Thomas R. Minor, Ph. D
Department of Psychology
Campus Box: 156304, UCLA
Los Angeles, CA 90095-1563
Tel: (310) 625-3611
Email: minor@psych.ucla.edu
Received August 04, 2014; Accepted October 16, 2014; Published October 18, 2014
Citation: Briones BA, Plumb TN, Minor TR (2014) Adenosine’s Autacoid Function in the Central Nervous System and the Behavioral State of Conservation- Withdrawal. Autacoids 3:106. doi: 10.4172/2161-0479.1000106
Copyright: © 2014 Briones BA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

The purine nucleoside adenosine has the critical autacoid function of directly linking cellular excitability to energy availability. The mechanism is activated whenever the rate of adenosine triphosphate (ATP) utilization exceeds the rate of synthesis. In CNS neurons, adenosine is produced by the rapid intracellular hydrolysis of purine nucleotides during neural excitation and then is extruded into extracellular space. The nucleoside is also produced by the extracellular hydrolysis of ATP by ectonucleotidases. Extracellular adenosine interacts with G-protein linked stereospecific receptors to reestablish metabolic homeostasis by exerting extraordinarily potent inhibition of neural excitation via a number of mechanisms. This autacoid mechanism is directly linked to the production of a depression like behavioral state termed conservation-withdrawal during times of physical stress or severe emotional distress. We review evidence here that adenosine produces a transition to conservation-withdrawal by activation of A2A receptors in the ventral-medial striatum.

Keywords

Top