ISSN: 2155-9910

Journal of Marine Science: Research & Development
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

A Re-evaluation of the Depositional Environments and Sedimentary Facies of Middle Miocene Paralic Deposits (Agbada Formation), Ewan and Oloye Fields, Northwestern Niger Delta

Durogbitan A Abimbola*

Petrfac IES, Research and Development, Manchester, UK

Corresponding Author:
Durogbitan A Abimbola
Principal Geoscientist, Petrfac IES
Research and Development, Manchester, UK
Tel: +447545822428
E-mail: adewoledurogbitan@yahoo.co.uk

Received Date: May 04, 2016; Accepted Date: May 24, 2016; Published Date: May 31, 2016

Citation: Durogbitan AA (2016) A Re-evaluation of the Depositional Environments and Sedimentary Facies of Middle Miocene Paralic Deposits (Agbada Formation), Ewan and Oloye Fields, Northwestern Niger Delta. J Marine Sci Res Dev 6:193. doi:10.4172/2155-9910.1000193

Copyright: © 2016 Durogbitan AA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

This study analyses depositional environments and facies of the middle Miocene (Agbada Formation), northwestern Niger delta, based on cores and well log data, and incorporating ichonological data, that has led to a revision and re-evaluation of the facies within the study area. Log motif analysis, calibrated by lithology descriptions based on core photos, was used to define log facies associations and to identify stacking patterns and key surfaces. Six main wireline log facies associations have been recognized using gamma ray log motifs calibrated with core. Within the cored interval two lithofacies associations have also been identified, based on composition, colour, sedimentary structures, and ichnofabric. They are: slope channel sand and shoreface sequences. The interpreted depositional facies model suggests an extensive development of marine dominated slope channel fill and shoreface deposits in the northwestern part of the delta. This suggests that in the studied area, the coastal barrier complex contains a large amount of sand that was originally deposited in river mouth bars, but was laterally removed by longshore current and re-deposited on the shoreline margin and basin ward through developed of canyons on the slope which serves as feeders and conducts for slope and basin fans. The descriptive framework for the ichnofabrics analysis is based on bioturbation index (degree of bioturbation), burrow size, burrow frequency and ichonological diversity. Six ichnofabrics are recognized within the core namely: Planolites-Teichnichnus, Planolites-Phoebichnus, Planolites, Planolites-Thalassinoides, Teichichnus-PhoebichnusPlanolites and Palaeophycus-Planolites ichnofabrics. Observed tiering patterns are both simple and complex, which may reflect gradual aggradation or degradation of the substrate leading to overprinting as a stable ichnofauna structure develops. This type of tiering arrangement indicates a stable environment. The ichnofabrics are named after the dominant trace observed. Sedimentological analyses indicated that the depositional environments range from inner shelf to offshore.

Keywords

Google Scholar citation report
Citations : 3189

Journal of Marine Science: Research & Development received 3189 citations as per Google Scholar report

Indexed In
  • CAS Source Index (CASSI)
  • Index Copernicus
  • Google Scholar
  • Sherpa Romeo
  • Open J Gate
  • Genamics JournalSeek
  • Academic Keys
  • ResearchBible
  • Ulrich's Periodicals Directory
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • Scholarsteer
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
Share This Page
Top