ISSN: 2157-7625

Journal of Ecosystem & Ecography
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Mini Review Article   
  • J Ecosys Ecograph,
  • DOI: 10.4172/2157-7625.1000361

A Note on Phylogenetic Patterns of Biodiversity

Chang Kuang*
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA
*Corresponding Author : Chang Kuang, Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA, Email: changcky@lbl.gov

Received Date: Nov 01, 2022 / Accepted Date: Nov 28, 2022 / Published Date: Nov 28, 2022

Abstract

The threats to biodiversity in the world today are numerous and expanding quickly. Approaches that combine bioinformatics, extensive phylogeny reconstruction, utilization of digital specimen data, and complex post-tree analysis (such as niche modelling, niche diversification, and other ecological analyses) are necessary to address these biodiversity concerns. Incomparable opportunities for mobilizing and integrating vast amounts of biological data are now available thanks to recent advancements in phylogenetics, emerging cyber infrastructure, and new data sources. This has led to the identification of complex patterns and the development of novel research hypotheses. These findings are significant because the global biodiversity data that are now being gathered and examined are intrinsically complicated. We refer to the systematics, ecology, and evolution-related research that is being made possible by the ongoing integration and development of the biodiversity tools outlined here as “biodiversity science.” To speed up research in these fields, new training that combines data science expertise with domain knowledge in biodiversity is also required. The future of global biodiversity depends on integrative biodiversity science. We cannot simply respond to the ongoing threats to biodiversity; instead, we must anticipate them. Using an integrative, multifaceted, big data approach, researchers can now project biodiversity and provide vital information for the general public, land managers, policy makers, urban planners, and agriculture, as well as for scientists.

Citation: Kuang C (2022) A Note on Phylogenetic Patterns of Biodiversity. J Ecosys Ecograph 12: 361. Doi: 10.4172/2157-7625.1000361

Copyright: © 2022 Kuang C. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top