ISSN: 2155-9872

Journal of Analytical & Bioanalytical Techniques
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

3-Aminopropyltrimethoxysilane and 3-Glycidoxypropyltrimethoxysilane Mediated Synthesis of Graphene and its Nanocomposite: Potential Bioanalytical Appliactions

Prem C Pandey*, Arvind Prakash, Ashish K Pandey and Digvijay Pandey

Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, India

*Corresponding Author:
Prem C Pandey
Department of Chemistry
Indian Institute of Technology
Banaras Hindu University
Varanasi-221005, India
Tel: +91 9415813018
Fax: +91 542 2368428
E-mail: pcpandey.apc@iitbhu.ac.in

Received Date: March 18, 2014; Accepted Date: April 23, 2014; Published Date: April 25, 2014

Citation: Pandey PC, Prakash A, Pandey AK, Pandey D (2014) 3-Aminopropyltrimethoxysilane and 3-Glycidoxypropyltrimethoxysilane Mediated Synthesis of Graphene and its Nanocomposite: Potential Bioanalytical Appliactions. J Anal Bioanal Tech S7:012. doi: 10.4172/2155-9872.S7-012

Copyright: © 2014 Pandey PC. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

We report herein, 3-aminopropyltrimethoxysilane (3-APTMS) and 3-glycidoxypropyltrimethoxysilane (3-GPTMS) mediated reduction of graphene oxide into graphene. The resulting graphene has been characterized by UV-VIS and Raman spectroscopy. The as synthesized graphene is used to make polycrystalline nanocomposite of prussian blue having admirable peroxidase mimetic ability. The apparent Km value of the graphene-PB nanodispersion with hydrogen peroxide (H2O2) as the substrate is found to be 6.8 mM. The as synthesized material not only validates the peroxidase-like activity, but also exhibits excellent electrochemical activity for biomedical applications. Electrocatalytic reduction of H2O2 shows electroanalytical sensitivity to the order of 850 μA mM-1cm-2 with lowest detection limit of 10 nM.

Keywords

Top