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Abstract

The iron oxide nanoparticles (FeNPs) are widely used in biomedicine for good biocompatibility. To promote its
safe application, any potential nanotoxicity should be thoroughly and carefully investigated. This paper
systematically summarizes our lab’s research on the nanotoxicity of iron oxide nanoparticles coated with
dimercaptosuccinic acid (DMSA), including the effects of FeNPs on viability, apoptosis, cycle, and oxidative stress at
cell level. In vitro studies revealed that the FeNPs showed obvious apoptosis of human acute monocyte cells
(THP-1) and human hepatoma cells (HepG2) at the highest concentration. FeNPs resulted in common and cell type-
specific nanotoxicities of the FeNPs to both human and mouse cells at the gene, disturbed cell’s iron and osmosis
homeostasis by the internalization of FeNPs through releasing iron ion in cells, resulted in cytotoxicity of DMSA as
coating molecules of FeNPs and the inhibitor of DNA binding/differentiation (Id) related nanotoxicity of FeNPs at
gene level. The studies of our lab shed many new insights into the nanotoxicity of the nanoparticle. Furthermore, the
toxicity may play more value if it is guided and applied reasonably, such as iron supplement, anti-oxidation, and
immunotherapy.
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Introduction
The iron oxide nanoparticles (FeNPs) are widely applicated in

biomedicine, such as magnetic resonance imaging (MRI) contrast
agents, drug vectors and hyperthermia [1-3]. FeNPs are well-known
unique magnetic properties and good biocompatibility relative to other
popular metal nanomaterials [4]. Therefore, FeNPs have been the most
intensively studied to commercialize in recent years. However, its
potential nanotoxicity has been overlooked by academia and not
masked by its bright application [5,6]. To promote its safe application,
especially as a clinical agent, any potential nanotoxicity should be
thoroughly and carefully evaluated. Some important nanotoxicities of
FeNPs have been therefore discovered, such as inductions of cell
inflammation [7], mitochondrial injury [8-10], detriment to cell
viability [9,11], reactive oxygen species (ROS) [8,9,12,13], apoptosis
[9,14,15], oxidative stress [15-17], cell motility impairment [12],
autophagy [8,9], and DNA damage [16,17].

As most of these applications are based on the delivery of large
numbers of nanoparticles onto or into the cells of interest [18], more
and more studies have paid attention to the resulted effects on cells and
their degradation. Cells can promptly and moderately regulate its gene
expression profile in response to any changes of intra- or extracellular
environments. Therefore, detection of gene expression profile is helpful
to explore the potential nanotoxicity of nanomaterials [13,19,20].
There are two advanced gene expression profiling techniques,
including DNA microarray (genechip) [20,21], and RNA-seq [22].
Finding all genes differently expressed at the cell or tissue levels by a
nanomaterial can provide valuable clues to investigate any potential
toxicity and analyze the relevant molecular mechanism [13,19,20,23].

Therefore, more and more studies started to evaluate the nanotoxicity
of various nanomaterials at the molecular level [13,20,22]. Many
previous unknown nanotoxicities of a nanomaterial were thus exposed.
For example, Kedziorek et al. studied the gene expression profile of
neural stem cell line C 17.2 with DNA microarray and revealed early
cellular responses to intracellular magnetic superparamagnetic iron
oxide nanoparticles (SPIONs) [24]. The analysis of the gene expression
profile found that various nanoparticles produced intracellular ROS
and resulted apoptotic cell death, such as silica nanoparticle [19], silver
nanoparticles [20], and magnetic nanoparticles [25].

Hamed Arami et al. reported that the effects of size, various
additional molecular parameters on the surface of the iron oxide
nanoparticles, molecular structure of the coating molecules,
administered dose on their degradation rates, and transformation to
plasma ferritin still require to be studied systematically in more
accurate ways through developed characterization tools with higher
mass sensitivities [26]. Our lab continuously and systematically studied
the nanotoxicity of iron oxide nanoparticles coated with
dimercaptosuccinic acid (DMSA), which possessed a mean particle
size of 11 nm through TEM observation. This paper gives a summarily
review of our studies on the iron oxide nanoparticle in recent years.

Characteristics and Internalization of FeNPs
FeNPs showed monodispersed in water solution and had an average

size of 11.0 ± 1.25 nm by TEM observation Figure 1. FeNPs were
negatively charged and superparamagnetic properties. IR spectral
analysis demonstrated that DMSA successfully coated the
nanoparticles [27]. The results of Prussian blue staining displayed that
FeNPs could be internalized into mouse mononuclear macrophages
(RAW264.7), mouse hepatoma cells (Hepa1-6), human acute
monocyte cells (THP-1), human hepatoma cells (HepG2), human
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cervical cancer (HeLa), and human normal liver cells (HL-7702).
Thereamong, RAW264.7 was labeled more effectively than other cells
at any concentration of the nanoparticles [28]. FeNPs were proved to
locate in the cytoplasmic inclusions [29].

Figure 1: Dispersibility and size of FeNPs through a transmission
electron microscope (TEM) observation [29].

Evaluation Biocompatibility of FeNPs at Cell Level
Evaluation biocompatibility of FeNPs at cell level mainly includes

effects on viability, apoptosis, cycle, and oxidative stress, which are
indispensable assessment of nanotoxicity. We investigated six different
mammalian cell lines (RAW264.7, THP-1, Hepa1-6, HepG2, HL-7702,
and HeLa) at six different concentrations (0,20,30,40,50 and 100
μg/mL) of FeNPs for 48 h. It is found that the viability of all the cells
were not significantly repressed except HepG2 exposed to 100 μg/mL
FeNPs. The detection of oxidative stress displayed that the levels of
total superoxide dismutase and xanthine oxidase showed no significant
changes, while the levels of malonyldialdehyde activity significantly
increased. The nanoparticles did not produce any significant influence
in cell cycles at any of the doses, but caused obvious apoptosis of
THP-1 and HepG2 cells at the highest concentration Figure 2. These
results reveal that 30 μg/mL FeNPs used in human studies with an
intravascular nanoparticle imaging agent (Combidex) efficiently
labeled all the cells studied, but did not produce any significant effects
on their viability, oxidative stress, cycle, and apoptosis, indicating
better biocompatibility and more useful clinical applications [11].

Effects of FeNPs on Global Gene Expression Profile of
Five Different Mammalian Cells

To investigate the nanotoxicity of FeNPs, we firstly detected gene
expression profile of five different mammalian cells treated with
different dose for different time, including two mouse cell lines, the
RAW264.7 and Hepa1-6 cells, and three human cell lines, the THP-1,
HepG2, and HL7702 cells. Thereamong, RAW264.7 and THP-1 are
blood cell and belong to monocyte-macrophage system, while
Hepa1-6, HepG2, and HL7702 are liver-derived hepatoma cells. These
five cell lines are suitable for evaluating the nanotoxicity of FeNPs
because the blood and liver cells are most intensively enriched the
nanoparticles in vivo due to the intravenous administration and

passive targeting. After data analysis, all differentially expressed genes
of five cells under each treatment were thus identified. Thereamong,
few genes were differentially expressed in HL7702 because of normal
liver cells. We analyzed effects of FeNPs on global gene expression of
RAW264.7 cells treated with two different doses (50 and 100 μg/mL)
for 4 h, 24 h, and 48 h. The results demonstrated that FeNPs display
cytotoxicity in this type of macrophage at high doses [27]. Then, by
annotating the functions of the differentially expressed genes of four
cancer cells, those common and cell type-specific nanotoxicities of the
FeNPs to both human and mouse cells at the gene, biological process
and pathway levels affected by the FeNPs were characterized,
developing new insights into the nanotoxicity of the FeNPs to these cell
lines [30,31].

Figure 2: Cell apoptosis [11]. Copyright© 2010, Springer Science
+Business Media BV.

Effects of FeNPs on Apoptosis Response Genes
Our previous study has revealed that high concentration of FeNPs

could increase cell apoptosis and decrease cell viability of some specific
mammalian cell types [32]. Apoptosis is an important biological
process, which is closely related to evaluate toxicity of nanoparticles.
We then investigated the global gene expression profiles of human
THP-1 monocytes. It is found that 35 significant up-regulation genes at
the concentrations of 100 µg/ml enriched three GO terms related to
cell apoptosis, including apoptosis, death and programmed cell death
by GO analysis [29]. However, it is only reported a small number of
genes correlated with cell apoptosis were determined to be expressed
differently via RT-PCR detection in some previous studies restricted by
low throughput [33]. A few previous studies have already been
performed to understand the mechanism of cell apoptosis induced by
nanoparticles. Here, our studies demonstrate that the cell apoptosis
was triggered by FeNPs via the caspase-10 mediated apoptosis pathway
Figure 3. A large number of gene of cytokine were differentially
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expressed via NLR signaling pathway and TLR signaling pathway, such
as IL-1, PIK3R1, NFKBIA, and TNFSF10. Consequently, the excessive
activation of cytokines induced extrinsic apoptosis pathway [29].

Figure 3: KEGG analysis of apoptosis signaling pathway at the concentration of 100 µg/ml FeNPs [29].

Effects of FeNPs on the Transcription of Genes Related
to Iron and Osmosis Homeostasis

By checking effects of FeNPs on gene expression profile of
RAW264.7 cells, we found that several important genes were
responsible for intracellular iron homeostasis, which indicate that the
iron homeostasis must be disturbed by the internalization of FeNPs
through releasing iron ion in cells. Further experiments proved that
the transcriptions of Trf, Tfrc, Lcn2, and Hfe, relevant to iron
metabolism, and Slc5a3, Slc6a12, related to osmosis were significantly
changed by the FeNPs treatment [34]. The subsequent detection of
cellular iron content demonstrated that the internalized FeNPs were
degraded in lysosomes for its acid environment and thus released iron
ions in cells, which damaged the iron and osmosis homeostasis of cells
and thus lead to cell’s complementary responses, including repressing
the expressions of Trf, Tfrc, and Hfe to prevent the transfer of
extracellular iron ions into cells, inducing the expression of Lcn2 to
promote the transfer of intracellular iron ions out of cells, and down
regulating the expressions of Slc5a3 to prevent the transfer of

extracellular myo-inositol (very important organic osmolyte) into cells
Figure 4 [34]. The results provided valuable mechanistic insights into
various FeNPs-induced toxicities [35].

Iron is essential to virtually all living organisms and involves in
multiple metabolic functions, including oxygen transport in
hemoglobin [36]. Iron deficiency anemia is prevalent. Furthermore, it
is reported that 90% of patients older than 65 years with iron
deficiency anemia suffer from a gastrointestinal cancer [35]. Iron oxide
nanoparticles are attracting attention to be developed as iron
supplement. For example, feraheme is approved by FDA for the
treatment of iron deficiency anemia in adult patients with chronic
kidney disease (CKD) [37]. FeNPs may be improved as another iron
supplement in future.
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Figure 4: Schematic of effects of FeNPs on transcription of genes
related to iron and osmosis homeostasis. Upward and downward
arrows mean up- and down-regulation of transcription after
nanoparticle treatment, respectively [34].

Effects of DMSA Coating on the Expression of Genes
Coding Cysteine-Rich Proteins

We found that about one fourth of the differentially expressed genes
(DEGs) coded cysteine-rich proteins (CRPs) in all four mammalian
cells under each treatment through analysis of DEGs [38]. DMSA
contains abundant thiol groups. The results indicate that FeNPs greatly
affected the expressions of CRP-coding genes. Furthermore, about 26%
of CRP-coding DEGs were enzyme genes in all cells. Our further
experiments revealed that the effect mainly resulted from DMSA
carried into cells by the nanoparticles [38]. FeNPs were internalized
into cells by endocytosis and positioned in lysosomes [39]. The
lysosomal thiol reductase (GILT) catalyzes disulfide bond reduction
under acidic conditions of lysosome [40]. The produced abundant thiol
groups can directly bind with both cysteines and metal ions in
cysteine-rich proteins, which are nearly transcription factors.
Therefore, a large number of target genes were regulated differently
Figure 5. The bare FeNPs have hydrophobic surfaces and a propensity
to agglomerate [41]. It has been proved that the uncoated Fe3O4
nanoparticles are toxic to cells [42]. Thus, FeNPs are often produced
with various coating molecules, such as 2,3-dimercaptosuccinic acid
(DMSA) [43]. It was reported that DMSA coating could improve
stability, internalization, biodistribution, and biocompatibility of
FeNPs in vivo and in vitro [44]. DMSA is used as orally administered
metal chelating agent receiving the approval of Food and Drug
Administration of USA [45]. DMSA alone showed low toxicity in
various biological systems due to its extracellular distribution [46]. Our
study thus firstly reported the cytotoxicity of DMSA as coating
molecules of FeNPs at the gene transcription level [38].

It is well known that free radicals cause the oxidation of
biomolecules, such as protein, lipid, and DNA, which results cell injury

and death [47]. Free radicals is deleterious to mammalian cells and
involves in the pathogenesis of many chronic diseases [48]. FeNPs with
rich thiol groups may be available antioxidants to remove excess free
radicals by redox reactions.

Figure 5: Schematic of effect of FeNPs on expression of CRP-coding
genes and the potential molecular. mechanisms [38]. Copyright©

2015, American Chemical Society.

Effects of FeNPs on the Expression of Id Genes
In our DNA microarray studies, it is worth to note that the

transcription of the Id3 gene was significantly down-regulated in five
cell lines (RAW264.7, Hepa1-6, THP-1, HepG2, and HL7702) treated
with FeNPs at two doses. Id genes of the inhibitor of DNA binding/
differentiation code for a class of well-known helix-loop-helix (HLH)
transcription factors, which are related to cell growth, proliferation,
differentiation, lineage commitment, tumor cell aggressiveness and
metastatic behavior [49,50]. We then did more investigations on the
effect of FeNPs upon the Id genes. We detected the expression of Id
genes in six cell lines (the above cell lines plus HeLa) at the same
conditions through quantitative PCR. Under each treatment, the Id1,
Id2, and Id3 gene was significantly down-regulated in both cell lines
and the liver tissues of mice, while Id4 gene was obviously up-
regulated. These results reveal that the nanoparticle exerts a significant
effect on the in vitro and in vivo expression of Id genes [51]. FeNPs
may regulate the Id genes via hypoxia, iron ions or redox and hydroxyl
radicals Figure 6. To our knowledge, it is the first report of this cellular
effect of FeNPs. Our study thus provides new insights into the Id-
related nanotoxicity of FeNPs and the close relationship between the
regulation of Id genes and iron [51].

Since Id3 gene was significantly down-regulated in six cell lines,
which can be identified as a nanotoxicity biomarker of the FeNPs. It is
reported that overexpressed Id3 inhibited cell proliferation and
induced apoptosis and may be a potential target for tumor suppression
[52]. Here, downregulated Id3 may activate cell proliferation, such as T
cell, macrophages and may be a potential drug for immunodeficiency
therapy.
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Figure 6: Potential mechanism of the Id genes regulated differently [51]. Copyright© 2015, American Chemical Society.

Effects of FeNPs on the Immune System
Our previous study revealed that intravenously-injected FeNPs were

passive targeted to the liver and spleen [51], which are known
classically part of the important immune system termed mononuclear
phagocytic system (MPS) [53,54]. The MPS system includes
macrophages located in different organs and monocytes circulating in
the blood [55], clearing pathogens or foreign bodies such as viruses
[56]. The previous data demonstrated that FeNPs induced response to
virus and hepatitis C pathway in the THP-1 cells, TLR signaling
pathway and JAK-STAT signaling pathway in the RAW264.7 cells,
indicating that the nanoparticles may influence in immune responses
of MPS like virus [30,31]. Immune system plays the most critical role
in immunotherapy [57]. We are systematically investigating the effect
of FeNPs on immune cells and explore the application of FeNPs in
immunotherapy.

In summary, we investigate systematically the nanotoxicity of FeNPs
at cell level and gene level Figure 7. The results show that FeNPs did
not produce any significant influence in cell level at any of the doses,
except that obvious apoptosis of THP-1 and HepG2 cells at the highest
concentration. At gene level, we analyzed gene expression profile in
depth. It is found that many genes were differently expressed, which
were involved in cell growth, cell apoptosis, iron homeostasis, cysteine-
rich proteins, and immune response. The data analysis is helpful for
extracting the useful biological information, finding new biological
phenomena, postulating the possible underlying molecular mechanism
and conceiving new hypothesis. More importantly, it can provide key
clues and instructions for designing and performing new experiments
for verify the conceived hypothesis, which shed many new insights into

the nanotoxicity of the nanoparticle. The iron oxide nanoparticles
show great application potential in biomedical field. The research on
their nanotoxicity is most significant. At the same time, the toxicity
may play more value if it is guided and applied reasonably.

Figure 7: The nanotoxicity evaluation of FeNPs at cell level and gene
level.
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