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Introduction
Alzheimer's disease (AD) is a neurodegenerative progressive 

disease of the elderly leading to dementia. The world Alzheimer report 
(Alzheimer’s disease International, global impact of dementia) of 2015 
indicated that 46.8 million people worldwide are living with dementia; 
this number is expected to double every 20 years [1]. There are two 
forms of AD. 

1. Early onset Familial Alzheimer Disease (eFAD). Abnormalities of 
the amyloid precursor protein (APP) that render it more amyloidogenic, 
or defects of processing normal APP cause genetic forms of AD. The 
literature estimates that eFAD accounts for approximately 2% of all 
people with dementia (approximately 3-5% of all Alzheimer cases) 
[1,2]. In these patients, autosomal dominant AD usually develops 
before age 65 due to mutations of the APP gene on chromosome 21 or 
the presenilin 1 and 2 genes (PSEN1 and PSEN2) on chromosomes 14 
and 1, respectively. 

2. Sporadic AD (SAD, late-onset). SAD is very common in the
elderly (approximately 70% of patients with dementia are attributed to 
SAD [1]). The cause of SAD is unknown. The vast majority of SAD is 
not genetically inherited although some genes such as the APOE may 
act as a major risk factor [3]. 

Vascular diseases such as hypertension and brain ischemia [4,5], 
diabetes [6,7] and obesity [8], traumatic brain injury [9], mood 
disorders [10] represent risk factors for SAD.

The neuropathological changes of AD brain include classical 
hallmarks such as the senile plaques and neurofibrillary tangles, and 
dystrophic neurites containing hyperphosphorylated tau [11-13]. 
Additional changes are represented by astrogliosis [14], microglial cell 
activation [14,15] and inflammatory reaction [16]. Senile plaques with 
amyloid cores in the brain of AD patients are often described in close 
proximity to microvessels with amyloid angiopathy [17].

Whereas considerable heterogeneity exists in the degree to which 
cognitive functions are affected in patients with AD, learning/memory 
impairment is almost invariably reported in AD [18,19]; typically, 
declarative memory is impaired and this quite often represents the 
initial cognitive deficit in AD. Indeed, the initial brain areas involved 
in the neurodegenerative progression of AD are the entorhinal cortex, 
hippocampus and temporal cortex [20,21], i.e., crucial areas for 
learning/memory. The hypothesis has been advanced that impairment 

of the entorhinal cortex initiates cortical-hippocampal dysfunction in 
AD [22]. The olfactory bulb, anterior olfactory nucleus, orbitofrontal 
cortex and parahippocampal cortices receiving olfactory input are all 
also affected early in AD [23]. Thus, odor recognition performance, 
in particular the ability to identify familiar odors, in association with 
episodic memory is impaired early in AD [24].

In addition to eFAD and SAD there are patients with cognitive 
decline unusual for their age that does not affect daily living (for example 
difficulty in remembering names of individuals, misplacing keys and 
spectacles or difficulty in remembering phone numbers, messages and 
appointments, therefore mostly verbal episodic memory deficit). This 
clinical state is called mild cognitive impairment (MCI). Some MCI 
patients progress to AD (roughly 15%/year; [25]), others progress 
to vascular dementia, but others remain stable or revert to normal, 
indicating that MCI has diverse causes and represents a heterogeneous 
group of patients. MCI patients can be further subdivided in: MCI 
patients with an amnestic profile [26] (impaired episodic memory 
retention and retrieval) and MCI patients with an anamnestic profile 
susceptible to be converted in AD. 

AD pathogenesis: Amyloid-dependent mechanisms and 
synaptic dysfunction

The pathogenesis of AD is characterized by formation of senile 
plaques and neurofibrillary tangles considered as hallmarks of AD. 
Aggregates of β-amyloid protein (Aβ) are the principal component 
of senile plaques [27]. Electron microscopy studies revealed that 
dense-core plaques comprise aggregates of Aβ, extracelullar filaments 
(dystrophic neuritis) as well as abnormal mitochondria and dense 
bodies of probable mitochondrial and lysosomal origin [27-29].

Aβ peptides start to be generated in considerable amounts by 
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the cleavage of amyloid precursor protein (APP) due to sequential 
activation of β- and presenilin catalytic site of γ-secretases (Figure 1) 
for causes that are still unknown in SAD. The four peptides derived 
from the amyloidogenic processing of APP, i.e., sAPPβ, Aβ, Jcasp 
and C31, have been shown to mediate neurite retraction, synaptic 
inhibition and programmed cell death [30]. APP cleavage by α and 
β-secretases generates soluble secreted fragments (sAPPα and sAPPβ) 
and membrane-associated carboxy-terminal fragments (CTF), which 
preclude Aβ generation; the two peptides derived from the non-
amyloidogenic processing of APP, sAPPα and CTF, mediate neurite 
extension, and inhibit Aβ production and programmed cell death [31]. 
Aβ can be found in different compositions of monomers, oligomers or 
fibrils [32]; in particular, increasing Aβ level tends to form monomers, 
which aggregate into oligomers, prefibrillar assemblies (protofibrils) 
and amyloid fibrils in a concentration-dependent manner. Toxic Aβ 
peptides are formed by 36-43 amino acids; the 42 amino acid peptide 
(Aβ42) is one of the most neurotoxic amyloidogenic fragments [33,34] 
and represents the chief component of senile plaques. 

Studies in AD animal models and patients have highlighted a 
dichotomy between behavioral deficits and neuropathologic findings. 
Impaired memory and synaptic loss occur before extensive deposition 
of amyloid in the brains of AD-type murine models and AD patients 
[35-37]. 

These observations suggest that early in AD, when levels of 
amyloid are low, mechanisms amplifying and focusing the effects of 
amyloid on cellular targets contribute to neuronal dysfunction. It is 
known that soluble synthetic or naturally produced oligomeric or 
oligomeric Aβ extracts from cerebral cortex of AD patients are capable 
of inhibiting hippocampal long-term potentiation (LTP) [38-42], a 

form of long-term synaptic plasticity thought to underlie learning 
and memory in the hippocampus and parahippocampal cortices [43]. 
Furthermore synthetic Aβ formed by dimers and trimers [44] in the 
low concentration of nanomolar range was capable of inhibiting LTP 
in the entorhinal cortex (EC) [45]. The EC represents a crucial site for 
memory formation as it integrates spatial information processed from 
the medial EC neurons with non-spatial information processed from 
the lateral EC neurons [46-48]. The involvement of the EC in cognitive 
processes is relevant for neurodegenerative disorders such as the AD, 
as it is one of the earliest affected brain regions [49]. This might be 
the consequence of a particular vulnerability of the superficial layer II 
neurons, that are susceptible to the deleterious consequences of aging 
and AD [50]. Interestingly, increasing synthetic Aβ42 concentration 
induces activation of microglial cells with pro-inflammatory cytokines 
that progressively affects synaptic transmission, AMPA current and 
long term depression (LTD, a second form of long term synaptic 
plasticity), in addition to LTP [51]. Indeed, an increasing level of 
Aβ42 has been shown to induce synaptic transmission impairment 
by regulating glutamate receptors trafficking [52,53]. Interestingly, an 
increase in endogenous Aβ level induced by inhibition of extracellular 
Aβ degradation causes pre-synaptic enhancement increasing glutamate 
release [54]. Thus, progression of synaptic dysfunction as well as 
cognitive decline by accumulation of extracellular Aβ is likely to result 
in alterations of pre- and post-synaptic proteins [55]. Activation of 
receptors such as the receptor for advanced glycation end products 
(RAGE) by Aβ [56] accounts for progress of synaptic dysfunction, 
development of inflammatory and, possibly, oxidative processes, 
leading cells to degenerate [51]. Concerning the receptor signaling 
pathways mediating synaptic dysfunction, it has been reported that 
Aβ impairs LTP in the hippocampus through JNK, cyclin-dependent 

Figure 1: The APP processing. The amyloidogenic processing of APP is due to the sequential activation of β- and presenilin catalytic site of γ-secretases; the four 
peptides deriving from this pathway, i.e., sAPPβ, Aβ, Jcasp and C31, have been shown to mediate neurite retraction, synaptic inhibition and programmed cell death 
[31]; the two peptides derived from the non-amyloidogenic processing of APP, sAPPα and P3, mediate neurite extension and inhibit Aβ production and programmed 
cell death (sAPP=Soluble Amyloid Precursor Protein; AICD=APP Intra-Cellular Domain; CTF=Carboxy-Terminal Fragment). 
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kinase 5 (CDC5), p38 mitogen-activated protein kinase (MAPK) 
[41]. In particular, low level of synthetic oligomeric Aβ42 inhibits 
LTP in hippocampus and entorhinal cortex through phosphorylation 
of p38 MAPK in neurons [45,57,58]. Increasing Aβ induces specific 
phosphorylation of p38 MAPK and JNK in neuronal and non-neuronal 
cells along with the induction of pro-inflammatory cytokines, such as 
the IL-β; as above reported in this condition basal synaptic transmission 
and long-term synaptic plasticity are affected [51]. 

Aβ-dependent toxicity is also mediated by internalization of Aβ 
peptides into neuronal cells, which contributes to disrupt neuronal 
functions [59,60]. One important question concerns the mechanism 
underlying Aβ transport from the extracellular to intracellular space. 
It has been reported that RAGE expressed in brain endothelial cells 
mediates Aβ transport across the blood brain barrier [61]. More 
recently, Takuma et al. [62] reported that RAGE represents at least 
a co-factor contributing to translocation across cell membrane of 
Aβ driving its transport and delivery to different subcellular spaces 
including mitochondria. Mitochondrial dysfunction with resultant 
neuronal perturbation and cognitive impairment [29,63] is considered 
a key feature in AD neuropathology and synapto-toxicity. Recent 
studies have shown that Aβ-binding alcohol dehydrogenase (ABAD), 
an enzyme present in neuronal mitochondria, exacerbates Aβ-induced 
mitochondrial and neuronal dysfunction; indeed, inhibition of the 
ABAD-Aβ interaction protects mitochondrial function and improves 
learning/memory [64]. Thus, Aβ-dependent synaptic dysfunction 
is mediated by several factors and mechanisms and its outcome 
depends on: level/accumulation of Aβ peptides, their aggregation state 
(monomers, oligomers, protofibrils, fibrils and plaques), signaling 
pathways activated in different neural cells, translocation across cell 
membrane and transport of Aβ peptide.

Actually, Aβ can be considered a product of APP metabolism. 
Indeed, Aβ level is detectable even in young healthy people but at a 
very low level. This result is in accordance with a supposed trophic 
role of low Aβ level [65]; remarkably, Puzzo et al. [66,67] showed 
that a very low level of exogenously applied Aβ42 (picomolar range) 
enhances synaptic plasticity and memory by acting through α7 
nicotinic receptor and confirmed that endogenous low Aβ is necessary 
for synaptic plasticity and memory. Thus, the accumulation (enhanced 
formation and/or defective clearance) of Aβ in specific areas of the 
brain (parahippocampal cortices, hippocampus and neocortical areas) 
for unknown cause(s) can be considered as an early pathologic event 
in AD leading to synaptic dysfunction. An alternative intriguing 
possibility is that mechanisms triggering the initial conversion of 
Aβ soluble protein into filamentous fibrillar species, with prion-like 
domains, are at the origin of AD pathogenesis [68]. However, several 
studies suggest that pre-fibrillar species, such as the Aβ oligomers in 
AD, may be more detrimental than fibrillar species [42], at least during 
an early stage in AD. During the progression of AD, misfolded Aβ and, 
possibly, tau filamentous species, might be involved in the propagation 
from one neuron to the next and from one brain region to another [68]. 
Interestingly, there is a relationship between the pathogenic amyloid 
β-peptide species and tau pathology; for example, intracerebral 
administration of Aβ1-42 fibrils into a mutant tau transgenic mouse 
induced tau hyperphosphorylation and local neurofibrillary tangles 
[69]. 

AD pathogenesis: Tau-dependent mechanisms and synaptic 
dysfunction

Tau is highly expressed in neurons and is abundant in axons [70]. 
Tau facilitates assembly and stabilization of microtubule polymers 

[71,72], modulating microtubule dynamics. Thus, under physiological 
conditions tau is mainly expressed within neurons. Human tau has been 
implicated in the pathogenesis of several neurodegenerative diseases, 
including AD [73]. Mouse models which overexpress forms of human 
tau have been generated and reproduce synaptic dysfunction, cognitive 
impairment and neurodegeneration [74-76]. Hyperphosphorylated, 
insoluble, and filamentous tau proteins were shown to be the main 
component of neurofibrillary tangles (NFTs), a pathological hallmark 
of AD and other tauopathies [70]. NFTs accumulate inside the cells, 
disrupting the intracellular transport system. Cytoskeletal changes 
are visible as dystrophic neurites, pre-tangles, NFTs in the cell bodies 
of affected neurons in AD even before plaque formation [77,78]. The 
neurofibrillary tangles are composed of paired helical filaments (PHF) 
with hyperphosphorylated forms of tau protein as the main component; 
the other component is represented by misfolded tau. Bundles of these 
PHF are also found in neurites [20,79]. Tau hyperphosphorylation 
can increase abnormal folding, fragmentation, aggregation and/or the 
development of NFTs leading to activation of intracellular pathways 
involved in synaptic dysfunction and neuronal toxicity; phosphorylation 
of tau potentiates MAPK activation similarly to Aβ and tau is one of 
p38 MAPK substrates [80]. Interestingly, transgenic mouse models 
suggest that neuronal loss and memory impairment are associated with 
the presence of soluble tau protein [75] (tau oligomers). Studies on cell 
viability have shown that misfolding of tau leads to the aggregation 
of tau and the appearance of toxic tau species in the extracellular 
space [81,82]. The endogenous intracellular tau may be released as 
aggregates to the extracellular space upon neuron degeneration [81]. 
Extracellular tau could be toxic by increasing intracellular calcium 
into neighboring neurons [82]. The presence of extracellular tau can 
be due to other causes, for example exocytosis; the N-terminal region 
of tau seems to be required for its secretion [83]. Neuronal toxicity 
may be caused by tau aggregates, even small and soluble aggregates in 
the form of oligomers, which have been identified in AD brain [84]. 
Tau can be released into the extracellular space, as oligomers [85]. 
Cells can take up extracellular aggregated tau [86], thus contributing 
to propagation of tau pathology. Formation of tau oligomers induces 
synaptic dysfunction and cognitive impairments [87], suggesting 
that this is the tau involved in early synapto-toxicity and cognitive 
impairment [88]. Indeed, in AD brains loss of synapses precedes NFTs 
formation and correlates with cognitive deficits [89,90]. Accordingly, it 
has been shown that prior to the formation of aggregates; tau can bind 
to pre-synaptic vesicles via its N-terminal domain inducing synaptic 
dysfunction [91]. Development of tau pathology closely associates with 
progressive neuronal loss and cognitive decline. In the brains of AD 
patients, for instance, tau pathology follows an anatomically defined 
pattern [20]; tau pathology spreads in the entorhinal cortex and 
then accumulates within limbic areas, followed by neocortical areas. 
Accumulation of extracellular tau species could be involved in neuron-
to-neuron propagation of neurofibrillary pathology and progression of 
tau toxicity that spreads throughout defined pattern of brain regions. 
The oligomers in the extracellular space could be taken-up by healthy 
neurons inducing further aggregation of tau [86] and propagation of 
neurofibrillary pathology. Recently, it has been shown that oligomeric 
extracellular tau is able to interact with cell receptors resulting in 
synaptic dysfunction and signaling propagation that could contribute 
to onset of neurodegeneration [92]. Moreover, these observations point 
to the involvement of extracellular tau species as one of the main agent 
in the neuron-to-neuron propagation of neurofibrillary pathology and 
progression of synaptic dysfunction and cognitive impairment in AD.

AD pathogenesis: The neurotrophic factors
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Selective vulnerability of basal forebrain cholinergic neurons 
(BFCNs) contributes to cognitive decline in AD patients [93,94]. 
BFCNs depend on the neurotrophin nerve growth factor (NGF) [95] 
for their trophism and survival [96]. Moreover, other neurotrophins, 
such as the brain-derived neurotrophic factor (BDNF), provide a high 
level of protection to neurons in brain injury and diseases [97,98]. 
BDNF together with its receptor TrkB (tropomyosin receptor kinase), 
is highly expressed in several brain areas where it acts as one of the chief 
regulator of synaptic plasticity and synaptogenesis [99,100]. The BDNF 
appears to be reduced in AD brain [101-103]. Thus, the hypothesis 
can be raised that neurotrophins, particularly NGF and BDNF, and 
their receptors, are involved in the pathogenesis of neurodegenerative 
diseases such as the AD. In addition, the possibilities of neurotrophin-
based therapeutic approaches should be evaluated. Interestingly, BDNF 
prevents Aβ-dependent impairment of LTP by reducing p38 MAPK 
phosphorylation [104]. Similarly, human painless NGF is capable of 
preventing synaptic plasticity impairment in the EC of the 5xFAD 
mouse model, either when acutely supplied on slices or following three 
weeks of intranasal treatment [105].

Neuronal Activity in AD
Disrupted neuronal network increases seizure activity in AD, 

contributing to cognitive decline [106]. Elevated electrical activity in 
the hippocampus has been observed early in AD in stages preceding 
the formation of senile plaques [107]. Interestingly, a recent paper 
suggested that APP molecules may function as surface receptors 
modulating the Aβ signaling [108]; the Authors showed that neurons in 
hippocampus became hyperactive at the pre-synaptic site through APP 
homodimer as pre-synaptic receptor, which binds Aβ40 following a rise 
in its concentration. If very low Aβ level is essential for the normal day-
to-day life in agreement to Puzzo et al. [66,67], thus, we can hypothesize 
that when the level of Aβ peptides is even slightly increased, it causes 
neuronal hyperactivity and neuronal functional impairment in several 
brain areas as also frequently reported in MCI patients [109]. 

Since neuronal activity increases Aβ production, it is likely 
that regional differences in neuronal activity may underlie early 
Aβ aggregation and deposition in specific brain areas such as the 
hippocampus and additional areas that belong to the default mode 
network (DMN) [110]. As reported above, the typical hallmarks 
of AD, such as the presence of amyloid protein and neurofibrillary 
tangles, are seen primarily in the EC in mild AD and “spread” to 
the hippocampus and other cortical areas as the disease progresses 
[20]. Thus, the hypothesis has been raised that neurodegeneration 
primarily observed in EC neurons may cause trans-synaptic deficits 
initiating the cortical-hippocampal network dysfunction in mouse 
models and human patients with AD. Indeed, in an AD mouse model, 
selective overexpression of mutant amyloid precursor protein (APP) 
predominantly in layer II/III neurons of the EC caused an aberrant 
excitatory cortico-hippocampal network activity leading to behavioral 
abnormalities [22]. Moreover, the time-course of synaptic impairment 
of the EC layer II in human amyloid precursor protein J20 transgenic 
mice (mhAPP), has been characterized. Although this murine model 
of AD displays diffuse amyloid accumulation in the brain, synaptic 
dysfunction is first observed in the intrinsic circuitry of the EC and 
then propagates to its main target area (i.e., the hippocampus). This 
suggests a precise temporal profile and an exact order of involvement 
of different circuitries during the progression of synaptic dysfunction 
in mhAPP mice, possibly corresponding to different stages of Aβ 
accumulation [111]. 

Concerning tau, its release can be stimulated by enhanced 

neuronal activity; Wu et al. [112] showed that increasing neuronal 
activity enhances release and transfer of tau in vitro and exacerbate tau 
pathology in vivo. As neurons within the AD brain can be hyperactive 
[106], thus enhanced neuronal activity may increase tau pathology. 
More recently, Fu et al. [113] showed that in a transgenic mouse model 
expressing mutant human tau predominantly in the EC, the formation 
of tangles in old mice was associated with excitatory cell loss and 
cognitive deficits in grid cell function. In addition, the tau pathology 
in the aged mice was accompanied by spatial memory deficits. These 
results suggest that in addition to Aβ, the tau protein could contribute 
to the synaptic alterations in the EC underlying the deterioration of 
spatial cognition described in AD patients.

Remarkably, later stages in AD progression are generally associated 
with a greater Aβ load, tau aggregation and hyperphosphorylation that 
exaggerate impairments in synaptic and cognitive function; AMPA and 
NMDA current are impaired, glutamate receptors trafficking altered 
and metabolism reduced. In addition, reduced synaptic activity causes 
detrimental effects on synapses and memory, favoring the accumulation 
of intraneuronal Aβ [57]. Independently of amyloid, the progressive 
impairment of synaptic and cognitive functions in AD is generally 
thought to result from a reduction in neuronal and synaptic activities in 
brain areas such as the entorhinal cortex and hippocampus. However, 
recent studies revealed a more complex picture of the neuronal defects 
in late stages of AD, showing both hypo- and hyper-activity in several 
brain regions; interestingly, hyperactive neurons were found in the 
vicinity of beta amyloid plaques [114].
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